
Distributed-HISQ: A Distributed Quantum Control Architecture
Yilun Zhao2,3,* Kangding Zhao1,* Peng Zhou4 Dingdong Liu1 Tingyu Luo5 Yuzhen Zheng1
Peng Luo1 Shun Hu1 Jin Lin6,7 Cheng Guo6 Yinhe Han2 Ying Wang2 Mingtang Deng1

Junjie Wu1 X. Fu1,†
1College of Computer Science and Technology, National University of Defense Technology, Changsha, China

2Research Center for Intelligent Computing Systems, State Key Lab of Processors, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China

3University of Chinese Academy of Sciences, Beijing, China
4China Greatwall Technology Group Co., Ltd., Shenzhen, China

5East China Normal University, Shanghai, China
6Hefei National Laboratory, Hefei, China

7University of Science and Technology of China, Hefei, China

Abstract

The design of a scalable Quantum Control Architecture (QCA)
faces two primary challenges. First, the continuous growth in
qubit counts has rendered distributed QCA inevitable, yet the non-
deterministic latencies inherent in feedback loops demand cycle-
accurate synchronization across multiple controllers. Existing syn-
chronization strategies — whether lock-step or demand-driven —
introduce significant performance penalties. Second, existing quan-
tum instruction set architectures are polarized, being either too
abstract or too granular. This lack of a unifying design necessitates
recurrent hardware customization for each new control require-
ment, which limits the system’s reconfigurability and impedes the
path toward a scalable and unified digital microarchitecture.

Addressing these challenges, we propose Distributed-HISQ,
featuring: (i) HISQ, A universal instruction set that redefines quan-
tum control with a hardware-agnostic design. By decoupling from
quantum operation semantics, HISQ provides a unified language for
control sequences, enabling a single microarchitecture to support
various control methods and enhancing system reconfigurability.
(ii) BISP, a booking-based synchronization protocol that can poten-
tially achieve zero-cycle synchronization overhead. The feasibility
and adaptability of Distributed-HISQ are validated through its
implementation on a commercial quantum control system targeting
superconducting qubits. We performed a comprehensive evaluation
using a customized quantum software stack. Our results show that
BISP effectively synchronizes multiple control boards, leading to
a 22.8% reduction in average program execution time and a ∼ 5×
reduction in infidelity when compared to an existing lock-step
synchronization scheme.
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1 Introduction

Memory, computation, and control are the three fundamental com-
ponents of a programmable computer. While qubits function as
both memory and computational units for quantum information
processing, an external dedicated control system is an indispensable
component of a solid-state quantum computer. This system serves
to bridge the quantum computational core with the classical world
accessible to end users by transmitting, receiving, and processing
classical electromagnetic signals.

Both realizing quantum advantage using noisy intermediate-
scale quantum systems [27, 33] and achieving Fault-Tolerant Quan-
tum Computing (FTQC) [1] necessitate a larger number of qubits,
with thousands or even millions of qubits expected [16, 21]. This
fact challenges the design of Quantum Control Architectures (QCA)
with simultaneously supporting programmability

1, feedback2,
and scalability

3.
QCAs can be roughly classified into centralized architecture

or distributed architecture. Centralized quantum control architec-
tures [11, 12, 45, 46, 54, 56] feature a single binary executable with
possible waveform configurations as input, whose digital part is
usually implemented in a single FPGA chip. Two factors signifi-
cantly constrain the scalability of these centralized architectures.

1Programmability refers to the capability of flexibly defining the sequence of quantum
operations applied on target qubits.
2Feedback refers to using the measurement result of one or more qubits to determine
the following operations applied on the same or other qubits.
3Scalability refers to the property that the quantum control system can satisfy the
control requirements of a larger quantum system by duplicating basic modules with
almost linear resource cost or lower.
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Internally, the instruction issue rate associated with a single instruc-
tion cache or memory cannot afford the broader quantum operation
stream required by the increasing number of qubits. Externally, the
limited number of pins available on a single FPGA chip sets an
upper bound on the amount of analog channels controlling qubits.
To support the ever growing number of qubits, QCA inevitably
adopts a distributed form.

Distributed Quantum Control Architectures (DQCA) can offer im-
proved scalability by partitioning a quantum program into multiple
binaries executed across several control units. Hence, it draws a
lot of research attention and inspires various off-the-shelf prod-
ucts. For example, QubiC 1.0 [46] utilizes a single FPGA board
with 4 analog inputs and 4 outputs, which can only control no
more than 4 superconducting qubits. To increase control capacity,
QubiC 2.0 [10, 47] adopts multiple RFSoC FPGAs, resulting in a
DQCA. The same rationale can be observed in other academic stud-
ies [17, 20, 32, 49, 52], as well as off-the-shelf products that adopt
board-level and/or chassis-level distribution [22, 34, 38].

By duplicating boards or chassis, these architectures offer im-
proved scalability with higher instruction issue rates andmore chan-
nels. Nevertheless, these architectures either fail to simultaneously
support scalability, programmability, and feedback [17, 20, 32, 49],
or they largely overlook two critical requirements, namely (1) the
challenge of reconciling cycle-level synchronization across con-
trollers with the concurrent execution of multiple (potentially het-
erogeneous) binaries [10, 51, 52], and (2) the engineering effort re-
quired to adapt these architectures to diverse control requirements.
Before future technologies based on cryogenic CMOS or single-flux
quantum devices get mature [4, 24, 26, 36], these problems remain
open challenges.

1.1 Synchronization Challenge

Synchronization is essential for implementing multi-qubit opera-
tions (typically two-qubit gates). Such operations require target
qubits simultaneously go through particular state evolution, which
in turn necessitates the concurrent application of control signals.
In a DQCA, control signals for the same operation may originate
from different controllers. Hence, it is crucial for these controllers
to commit corresponding instructions at precisely the same time.

This synchronization requirement in quantum system is by na-
ture different from that in classical computer systems. In classical
systems, synchronization primarily serves to guarantee expected
data dependency across threads or processes. The critical factor
is often the relative order of operations, and waiting a few clock
cycles rarely invalidates the fundamental logic. In stark contrast,
a timing error of even a few nanoseconds can lead to the failure
of a quantum gate [12]. This corruption can further give rise to
meaningless results. Therefore, synchronization in DQCA demands
instructions to be committed at almost the same wall-clock time,
and can be as tight as at tens of picoseconds level. This is not merely
a preference for performance or a safeguard for logical order; it is a
fundamental physical necessity rooted in the quantum mechanical
evolution of the qubits. Fortunately, this unprecedented synchro-
nization requirement can be reduced to cycle-level instruction

commitment synchronization
4 in engineering practice, because

it is feasible to synchronize the phase of different clocks at high pre-
cision via a clock distribution network, based on, e.g., phase-locked
loops.

While lock-step synchronization—where controllers are syn-
chronized at every clock cycle—is a straightforward approach, it
introduces significant inefficiencies. In this scheme, if a controller
executes instructions without knowledge of the other controllers’
state, non-deterministic feedback operations can make it difficult
to commit collaborative multi-qubit instructions that require pre-
cise timing. Enforcing lock-step synchronization incurs substantial
execution overhead. FFor instance, the approach used by the IBM
system [51] distributes the entire program flow to all controllers,
with operations for other controllers replaced by wait/idle/delay
instructions. This design forces every feedback operation to in-
cur data transmission across all controllers, leading to unnecessary
communication and latency that scales with the number of feedback
operations. Furthermore, as analyzed in QuAPE [54], this solution
makes it difficult to execute simultaneous feedback operations on
different qubits, which can significantly harm execution fidelity.

Another solution is to allow each controller to execute instruc-
tions at its own pace and synchronize them only when required.
This solution significantly reduces the amount of generated instruc-
tions, thereby increasing instruction execution efficiency. Moreover,
it may increase the flexibility of programming by allowing each
controller to have its own control flow [10]. To realize such an on-
demand synchronization scheme, an existing solution inserts a sync
instruction immediately before the instruction to be synchronized,
as adopted by Qubic 2.0 [10]. In this scheme, an unavoidable latency
is introduced for the sync signal bouncing back. In the context of
quantum computing’s pursuit of ultimate hardware performance,
it is also highly desirable to eradicate this latency.

To summarize, it remains an open challenge to design a QCA
that has an efficient and scalable synchronization scheme.

1.2 Adaptability Requirement

In contemporary quantum systems, the physical realization of
qubits, control methodologies, and specific implementations of
pulse generation and acquisition exhibit significant diversity
and are undergoing rapid evolution. For example, superconduct-
ing qubits differ structurally: some utilize fixed-frequency trans-
mons [42], while others incorporate tunable couplers to adjust gate
speeds and enhance performance [1].

For reasons of time and money, it is of practical meaning for the
digital part of the quantum control microarchitecture to support
various gate implementation strategies to control various quan-
tum chips with various analog implementation. However, existing
Quantum Instruction Set Architecture (QISA) designs are either too
high-level or too low-level. Some QISAs directly adopt quantum
operations as instructions, which makes their microarchitectures
difficult to support other quantum chip structures or operation
implementation strategies [11, 54]. Instructions of other QISAs are
tightly bound to specific control electronics, so that when adapt-
ing these architectures to another control electronic system, it

4In this paper, we also use an equivalent term “cycle-level instruction synchronization”,
“commitment” is omitted for simplicity.
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inevitably leads to a clumsy and redundant microarchitecture im-
plementation [12, 20, 38, 45–47]. Therefore, it remains an open
challenge to design an adaptable QISA.

1.3 Contributions

In this paper, we introduce Distributed-HISQ, an architectural
solution to systematically address the design requirements of DQCA
with the following key contributions:

(1) HISQ, a Hardware Instruction Set for Quantum computing.
We identify a new abstraction layer for adaptable QISA de-
sign, which is not only implementable on existing hardware
but also expressive enough for potential applications.

(2) BISP, a Booking-based precise Instruction Synchronization
Protocol. By introducing a two-condition synchronization
method and advancing the sync instruction when possible,
BISP can be implemented with low hardware cost. This ap-
proach enables both neighbor-level and region-level syn-
chronization with potentially zero-cycle overhead. When
zero cycle is not possible, the overhead is still no more than
that of existing synchronization schemes.

(3) We implement Distributed-HISQ in a customizable com-
mercial quantum control system. The adaptability of HISQ
is validated by using the same HISQ core to control both the
arbitrary-waveform-generator board and data-acquisition
board. BISP has also been validated by multiple synchroniza-
tion experiments using two boards with different instruction
streams.

(4) We have designed and implemented a full quantum control
software stack, which can describe and compile quantum
algorithms and experiments into HISQ instructions. The
feasibility of Distributed-HISQ has been verified by various
experiments on superconducting qubits with this control
software stack.

This paper is organized as follows. After Section 2 details the
challenges of DQCA with corresponding insights, Section 3 - 5 in-
troduces the single-node architecture, the synchronization protocol,
and the distributed network of Distributed-HISQ, respectively.
Verification and evaluation are performed in Section 6. After some
discussion in Section 7, Section 8 concludes.

2 Challenges and Insights

In this section, we concretize challenges in synchronization among
controllers and adaptability of a hardware instruction set, and elabo-
rate on how the challenges drive the design of Distributed-HISQ.

2.1 Synchronization

2.1.1 Origination of Synchronization Challenge. The synchroniza-
tion challenge of DQCA originates from the non-deterministic
nature of dynamic quantum circuits, which serve as critical com-
ponents in many application scenarios. For example, distributed
quantum computing [6, 35] leverages quantum teleportation to con-
nect multiple quantum chips to increase system scale, long-range
entanglements [3] can be created by dynamic circuits with lower
circuit depth, and logical T-gate in surface code [9] needs to be
implemented via logical state teleportation.

⚠️

(b) Feedback Operation (c) Reserve Time

⚠️

(d) Share Program Flow

Controller 2

Controller 2 Controller 1

Central Controller

Controller 2

(a) Circuit Slice of Distributed QFT

Controller 2

Communication
Qubits

need sync!non-deterministic

deterministic

Controller 1

Chip 1

Chip 2

❓

Figure 1: Motivational example of the synchronization chal-

lenge. (a) Example circuit slice derived from compiling QFT

algorithm running on two quantum chips [6, 23]. (b) Open-

QASM [5] code snippets of the highlighted part in the cir-

cuit diagram. (c) Inserting a delay instruction into the false

branch. (d) Distribute the control flow to other controllers.

Consider a system with multiple quantum chips connected via
inter-chip quantum communication channels, with each qubit con-
trolled by a distinct controller. As illustrated in Figure 1(a), a QFT
algorithm running on this system relies on real-time feedback to
implement cross-chip two-qubit gates [6, 23, 44] [highlighted in
dashed box, with corresponding pseudo-code in Figure 1(b)]. To
achieve the minimal execution time, every gate should be executed
as early as possible. Since the execution of the 𝑍 gate depends on
a previous measurement result, the earliest time to execute the
𝐻 gate and following CZ gate becomes unpredictable at compile
time. However, the implementation of CZ requires synchronization
between these two controllers, which is challenging due to the
unpredictable timing behaviors.

To solve this problem, we can either keep all the controllers
synchronized at all time, or allow each controller to operate inde-
pendently and synchronize with others only when necessary.
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2.1.2 Lock-Step Synchronization. Based on whether there exist
information exchange about control flow across controllers, two
different methods can be used to achieve lock-step synchronization.
Unfortunately, both suffer from high execution overhead.

The first idea is to “reserve” the time for the non-

deterministic operation, as seen in Figure 1(c). No matter the 𝑍
operation is performed or not, the 20 ns time slot should be con-
sumed. The immediate drawback of this method is the introduction
of “dead time” when the conditional operation is not performed.
Such unnecessary delay accumulates linearly as the number of feed-
back operations or the duration of conditional operation increases.
The longer execution time can degrade precious quantum fidelity.
More importantly, this solution cannot support repeat-until-success
circuits with non-deterministic number of feedback loops [37].

The second idea is to “share” the program flow information,
a strategy implemented in the IBM quantum control system [51]
[Figure 1(c)]. When a measurement is performed, the outcome is
broadcasted to all controllers so every controller proceed in lock-
step down the same branch. This solution is inherently limited by
enforcing the same program flow on all controllers. Firstly, this
introduces unnecessary control flow and delay instructions that
may exaggerate the quantum operation issue rate problem limiting
the scalability. Secondly, it undermines programming flexibility
as other controllers can only stay idle when some are performing
feedback. For example, it is difficult to realize simultaneous feed-
back [54]. When the conditioned sub-circuit is long, temporally
stacked feedbacks can accumulate much longer execution time than
the parallelized version. For example, some implementation scheme
of the logical𝑇 gate [Figure 2(a)] relies on the conditional logical-𝑆
gate [Figure 2(b)], which in turn is a sub-circuit with multiple log-
ical operations that can take a substantial execution time. [9]. If
the feedback in logical 𝑇 gates can only be executed sequentially,
the execution time of the entire program will grow significantly.
Ultimately, both issues can incur execution time overhead than
expected that dampens program fidelity.

(a) Logical𝑇 gate. (b) Logical 𝑆 gate.

Figure 2: (a) One implementation of logical 𝑇 gate relies on

the conditional logical 𝑆 gate. (b) Logical 𝑆 gate is a sub-circuit

with multiple logical operations that take a long execution

time.

2.1.3 Insights for Efficient Synchronization Protocol. Given the sub-
stantial overhead of lock-step synchronization, an alternative is to
synchronize controllers in an as-needed manner. This approach
usually inserts a sync instruction immediately before the instruc-
tions that requires cycle-level synchronization [10]. Nonetheless, it
will still introduce unavoidable latency for sync signals bouncing
back.

In order to achieve the utmost synchronization efficiency, we
draw inspiration from a common scenario in daily life: an individ-
ual organizing a meeting seeks to start it at the earliest possible
time. Each participant, upon determining their earliest available
time, sends a message specifying this time to the organizer. After
collecting responses from all participants, the organizer identifies
the latest of these times—representing the earliest feasible start for
the meeting—and notifies all participants accordingly. Provided the
notification reaches participants before the designated start time,
the meeting can proceed at the earliest time.

Since quantum operations usually have a fixed duration [28],
a controller can potentially predict in advance the exact time at
which it will reach a synchronization point5, similar to a participant
determining their earliest available time for a meeting. Additionally,
a common router can serve as the meeting organizer. It is possible
for us to design a concise synchronization protocol based on the
following insight:

Insight #1

A controller can “book” a synchronization point thanks to the
deterministic nature of quantum operations.

2.1.4 Insights for Common Synchronization Scenarios. In the meet-
ing example, the condition for the meeting to start at the earliest
time is that participants receive the meeting time notification be-
fore its scheduled start. For humans, the communication overhead
is negligible. However, a quantum controller must spend several
cycles to communicate with other controllers. Hence, to achieve
the similar effect as meeting start, the communication latency must
be suppressed as much as possible.

To meet this requirement, we identify two key characteristics
of quantum applications and quantum devices which we can take
advantage of:

(1) Synchronization within a qubit region is a common sce-
nario. Quantum programs are often executed with multiple
repetitions. Before each repetition, it is usually necessary
to perform a global synchronization among the involved
controllers. Considering that a quantum program is often
mapped to a group of connected qubits (qubit region), the
region-level synchronization becomes a common scenario.

(2) Synchronization between controllers for neighboring qubits
is a common scenario, since two-qubit gates are common
cases and they can only be executed between physically
adjacent qubits. Tominimize communication latency in these
scenarios, the ideal situation is that these controllers are
directly connected as neighbors.

Insight #2

Synchronization among controllers for a qubit region, and be-
tween controllers for neighboring qubits, are two common sce-
narios.

5The time point at which a controller finishes all operations before executing the
operations that need be be synchronized.
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These insights naturally give rise to a hybrid topology design
with a simple routing mechanism to reduce communication latency,
which will be detailed in Section 5.

2.2 Adaptability

We can get a better understanding on the adaptability challenge
of a QISA by digging into how a quantum operation should be
implemented, or how the control electronics should behave. Indeed,
the hardware behavior of a quantum instruction can be affected by
multiple factors.

• Different qubit implementation technologies require differ-
ent control signals for the same quantum gate. For example, to
implement a CZ gate, the corresponding control signals might
be square pulses for superconducting qubits, while a set of mod-
ulated lasers for Rydberg atoms [39].

• For the same qubit implementation technology, like supercon-
ducting qubits, different quantum chip structures require dif-
ferent control signals. Take the CZ gate as an example. Capacitor-
coupled transmon qubits may require two square flux pulses and
other possible auxiliary flux pulses to tune the frequencies of the
target and adjacent qubits, respectively [7, 41]. While tunable-
coupler-coupled qubits can achieve the same effect using only
three pulses [48].

• For the same quantum chip structure, different operation im-

plementation strategies require the use of different control
signals [55]. For the same coupler-coupled qubits as mentioned
above, it is also possible to use all microwaves instead of square
pulses to implement a CZ gate [31].

• Finally, even for the same control strategy of the same gate on
the same qubits, different implementations of the analog

part in the quantum control system can lead to different behav-
iors of the digital part. Taking the 𝑋 gate as an example, some
systems may require the microarchitecture to trigger a pair of
intermediate-frequency outputs from Digital-to-Analog Convert-
ers (DAC), which are later IQ-modulated with a radio-frequency
carrier wave. On the contrary, direct-microwave-synthesis-based
systems require to set the frequency and phase of the numeri-
cally controlled oscillator (NCO) and then directly trigger radio-
frequency output from the DAC with a given envelope [25] .

Since quantum chip fabrication, gate implementation strategies,
and quantum control systems often advance at asynchronous pace,
it is of ample economic and engineering significance for the same
digital part of the quantum control microarchitecture to support
various gate implementation strategies to control various quantum
chips with various analog implementation.

However, it is difficult to adapt existing QISAs to various quan-
tum chip structures and gate implementation strategies. Some
QISAs [11, 54] directly adopt quantum operations as instructions,
which are relatively too high-level for hardware implementation.
As a result, the corresponding microarchitecture can support the
execution of these instructions targeting no more than one quan-
tum chip structure without breaking the instruction definition. For
example, eQASM allows using two-qubit gates. However, its in-
stantiated microarchitecture cannot support other quantum chips
than the targeted seven-qubit chip. In contrast, some other QISAs

tightly bind the instruction semantics to the output channel behav-
iors [20, 38, 45–47]. The microarchitecture of these systems can
hardly be adapted to other kinds of output channels or hardware
behavior without sacrificing existing or adding new instructions
or bit-fields with corresponding microarchitecture implementation.
This fact usually leads to a clumsy microarchitecture implementa-
tion. For example, many bit fields in QubiC [47] will be sacrificed
if the definitions of instructions are altered to generate a marker
signal.

Based on the above analysis, it is easy to comprehend that the
key for designing an adaptable QISA is to figure out an abstraction
layer, which is not only implementable on existing hardware,
but also expressive enough for potential applications. As quan-
tum controllers are responsible for sending required control signals
to expected qubits with correct timing, we can extract the following
insight for the instruction set design by decoupling quantum in-
structions from the operation semantics (top) as well as the concrete
electronics behavior (bottom):

Insight #3

At the instruction level, quantum control can be abstracted into:
sending particular codewords, to particular ports, at particular
time-points.

By decoupling quantum semantics from hardware instructions,
it significantly simplifies hardware implementation and allows this
instruction to hook various underlying electronics implementations.
On the other hand, the quantum semantics can be taken care of
another higher-level software instruction set, which can focus on
the expressiveness of quantum computation and portability across
various hardwares.

3 Design Overview

Being a DQCA, Distributed-HISQ comprises multiple control
nodes coordinated by routers [Figure 3(d)]. A single node [Fig-
ure 3(c)] integrates digital and analog components. Its digital part,
the HISQ core, abstracts quantum operations as “sending particu-
lar codewords to particular ports at particular time-points”. This
abstraction decouples the instruction set from quantum semantics,
allowing adaptation to diverse analog implementations. To achieve
efficient synchronization, the microarchitecture [Figure 3(a)] builds
on top of queue-based event timing control mechanism. This mech-
anism can hide classical pipeline non-determinism and issue quan-
tum instructions at precise timing. By incorporating the meeting
appointment insight, we design a highly efficient booking-based
synchronization protocol (BISP) among control nodes [Figure 3(e)],
which can allow multiple controllers to re-sync their instruction
execution at cycle-level precision after non-deterministic program
subroutines. This protocol is implemented by the newly introduced
synchronization unit withmodified timing control unit [Figure 3(a)].
To enable efficient synchronization and feedback between remote
controllers, Distributed-HISQ employs a hybrid topology [Fig-
ure 3(d)], which will be detailed in Section 5. Figure 3(b) shows
two types of boards implemented based on HISQ, which form the

5
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Figure 3: Overview of Distributed-HISQ. (a) Microarchitecture; (b) AWG board and readout board based on HISQ; (c) Single-

node architecture; (d) Multi-node architecture;(e) Synchronization scheme.

individual nodes of Distributed-HISQ. The detailed hardware
implementation and configuration are described in Section 6.

3.1 Instruction Set Architecture

The core of designing a hardware-implementable instruction set
is to provide the capability to describe operations of quantum con-
trollers, including:

(1) Real-time classical register update and program flow control;
(2) Triggering particular actions at specific locations, including

quantum operations and other behaviors like quantum error
decoding;

(3) Timing control of controllers, including synchronization;
(4) Classical communication across controllers to support, e.g.,

feedback control.
Hence, HISQ is designed to support the above four parts.

3.1.1 Real-Time Classical Computation. To reduce the burden in
hardware and software implementation, HISQ is designed to be an
extension to the RISC-V 32I instruction set. To avoid disrupting
timing behavior, we currently disable instructions/functionalities
related to interrupts and memory fence.

3.1.2 Triggering Operations. As detailed in Section 2.2, triggering
operations can be abstracted as “sending particular codewords, to
particular ports, at particular time-points”. To support flexibly spec-
ifying time-points, HISQ employs the timing control mechanism
as proposed by QuMA [11, 12]. Hence, both the immediate and
register version of wait instruction are included.

A set of codeword (cw) instructions are used to describe “send-
ing particular codewords, to particular ports”. The syntax of these
instructions is:

cw.x.x <port>, <codeword>

6
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Where, x could be either i or r, indicating <port> and <codeword>
specified by an immediate or a general-purpose register (GPR). For
example, cw.i.r 3, r3 means sending the codeword specified by
the GPR r3 to the port No. 3. The meaning of a codeword depends
on the compiler and hardware configurations, thus it can vary in
concrete implementations. For example, a codeword can correspond
to triggering a Gaussian pulse, setting the frequency of Numerically
Controlled Oscillator (NCO), or any hardware action(s) that can be
abstracted into a digital number. A port may direct to the channels
for I/Q, flux, readin/readout, or any other components that might
need be controlled. This port-based abstraction makes HISQ inde-
pendent of the concrete implementations of operation/qubits while
preserving sufficient expressiveness for controlling the hardware.

3.1.3 Synchronization. To support as-needed synchronization,
HISQ includes a synchronization instruction with following syntax:

sync <tgt>

The sync instruction can only function in combination with
other sync instructions, with each sync instruction running on
one controller. The effect of a group of sync instructions is to
synchronize the clocks of controllers involved.

The field <tgt> is an immediate value, which can designates
the address of (i) a controller or (ii) a router. In the former case,
<tgt> must refer to a nearest-neighbor controller, and there must
be another sync instruction running on the neighbor controller
with its <tgt> field referring to this controller. The result of both
instructions is to synchronize this controller and this neighbor
controller. In the latter case, <tgt> must refer to a ancestor router
of this controller, and the effect is to synchronize with a subset of
controllers managed by the same ancestor router. For the sake of
brevity, we will describe the synchronization mechanism in detail
in Section 4.

3.1.4 Classical Communication. Classical information like mea-
surement results should be transmitted across controllers to support
real-time feedback and quantum error syndrome decoding. To this
end, HISQ includes send/recv instructions, which are executed by
a Message Unit (MsgU).

3.2 Single-Node Microarchitecture

The microarchitecture supporting HISQ is designed based on the
QuMA microarchitecture [11, 12]. It differs from QuMA by slight
modification [Figure 3(a)] in the timing control unit (TCU) and the
introduction of synchronization unit (SyncU) and the message unit
(MsgU).

SyncU is used to support the sync instruction and detailed in
Section 4. Since sending and receiving messages across chips is well
studied in previous network-related research, how MsgU supports
send/recv is omitted in this paper for brevity. Here, we mainly
discuss the the basic working principle of TCU with required modi-
fication to support synchronization.

To achieve precise timing control, TCU employs the queue-based
timing control mechanism [12]. It contains a set of event queues
with each corresponding to a port, where instructions can be en-
queued at non-precise timing while issued at designated precise
timing. The overall effect of TCU is to issue corresponding events

at expected precise time-points. We refer interested readers to
Ref. [11, 12] for more details about queue-based timing control.

In the original queue-based timing control, there is no mecha-
nism for TCU to wait for an external signal, and it can only support
precise timing control in which all waiting durations are encoded
into a fixed instruction sequence and calculated at runtime. While
synchronization is performed, one controller needs to wait for a
non-deterministic duration depending on another controller, which
cannot be supported by the original TCU. Addressing this problem,
TCU for HISQ is equipped with multiple ports receiving external
triggers, that can be used to pause and resume the timer in TCU.
In this way, TCU can allow events with non-deterministic timing
while preserving precise timing control between non-deterministic-
timing events.

4 Synchronization Scheme

In a DQCA, feedback operations create dynamic timelines, making
controller synchronization a key challenge (cf. Section 2.1). To
achieve efficient synchronization, we introduce the BISP protocol.
We first demonstrate the simplicity of BISP through its single-node
hardware behavior. Then, we use examples to show the potential
of BISP to achieve zero-cycle sync overhead in both nearby and
remote synchronization scenarios.

4.1 Node Actions to Achieve Synchronization

The hardware implementation of the BISP protocol is very sim-
ple. Taking the nearby synchronization between two adjacent con-
trollers as an example, its single-node hardware behavior is as
follows (Figure 4):

Synchronization begins when the TCU sends a sync event to
the SyncU at the “booking” time 𝐵0. Upon receiving this event, the
SyncU transmits a 1-bit signal to the target controller and starts an
𝑁 -cycle countdown. Here, 𝑁 is set to match the transmission delay
between the hardware ports of the specific pair of neighboring
controllers. Since this delay is fixed and can be calibrated once the

Time

Counter

Sync Queue

Condition I:
count complete

sync event

Sync Flags

cycles

✔️

start couting 
cycles

I/O

send sync
signal

Condition II: 
sync received

✔️

SyncU
pause continue

Timer timer 
advancing

timer 
pausing

TCU

timer 
advancing

awaiting sync

1

0

Figure 4: Single-node hardware behavior of BISP. The sync

signal is exchanged with a neighbor controller. Upon receiv-

ing the signal, the corresponding sync flag (represented by

stacked boxes for each neighbor) is set and cleared after be-

ing read.
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hardware connections are established, 𝑁 can be pre-configured in
hardware for each connection.

Synchronization is achieved when both conditions are met:
• Condition I: The 𝑁 -cycle count completes.
• Condition II: The sync signal from the target controller is

received.
Note that when the 𝑁 -cycle count completes, the SyncU may stall
the TCU if the sync signal has not yet been received. In this case,
the TCU pauses executing quantum operations until the sync signal
arrives; otherwise, if the sync signal is received before the count
completes, the TCU proceeds without interruption.

In our FPGA implementation, SyncU consumes only 13 LUTs.
Such a lightweight scheme not only ensures cycle-level in-

struction synchronization, but also can realize zero-cycle

overhead in some scenarios.

4.2 How Synchronization is Achieved

The effectiveness of BISP in nearby synchronization scenario can
be observed from Figure 5(a).

Firstly, we can observe that controllers C0 and C1 execute the
synchronous task at the same time-point.
• At the booking time-point 𝐵0, C0 sends a sync signal to C1 and si-

multaneously starts counting for the signal transmission latency
𝐿0. At 𝑇0 = 𝐵0 + 𝐿0, C0 has met Condition I. However, C0 does
not receive the sync signal from C1 until𝑇1, and thus only meets
Condition II at 𝑇1. Therefore, it executes the synchronous task
at 𝑇1.

• C1 sends its sync signal at 𝐵1, which arrives at 𝑇1, thereby satis-
fying Condition I at 𝑇1. Meanwhile, the sync signal arrives at
C1 at𝑇0, satisfying Condition II at𝑇0. Since𝑇0 < 𝑇1, C1 satisfies
both conditions and begins executing the synchronous task at
𝑇1.

Thus, both C0 and C1 execute the synchronous task at 𝑇1. In this
diagram, C0 sends the sync signal before C1. If we swap C0 and
C1 so that C1 sends the signal first, both controllers still begin
executing the synchronous task at the same time. This demonstrates
that BISP ensures adjacent controllers start the synchronous task
at the same time-point, thereby achieving cycle-level instruction
synchronization.

Secondly, the synchronization overhead 6 is potentially “zero-
cycle”. For both C0 and C1, assume there are several deterministic
tasks (light-yellow blocks) between their last non-deterministic task 7

(dark green) and the synchronous task (light green). The time-
points that C0 and C1 finish these deterministic tasks are 𝑇0 and 𝑇1,
respectively. Hence, the earliest time that C0 and C1 can co-execute
the synchronous task is given bymax(𝑇0,𝑇1) =𝑇1. Consider both C0
and C1 execute the synchronous task at exactly𝑇1, we can consider
that BISP achieves zero-cycle overhead in this case.

The core idea of BISP lies in the "booking" mechanism. As long
as there are deterministic tasks with sufficient duration to cover
communication latency, we can book a synchronization point in

6In this paper, synchronization overhead refers to the time interval between the last en-
tity reaching the synchronization point and the first entity beginning the synchronous
task.
7A non-deterministic task refers to a task with unpredictable duration, e.g., a feedback
operation. Similarly, a deterministic task has a fixed duration, e.g., a quantum gate.

advance. This allows us to insert a sync instruction ahead of

the synchronization point (Figure 6), rather than placing it

immediately before the synchronization point as done in

Qubic [10]. Consequently, BISP minimizes the synchronization
overhead (cf. Insight 1). This approach can also be easily extended
to more complex remote synchronization scenarios.

4.3 Extending to Remote Synchronization

Figure 5 exemplifies a remote synchronization scenario, where
controllers C0, C1, and C2 synchronize with each other through a
router 𝑅.

These controllers, whether adjacent or not, can still achieve syn-
chronization with zero-cycle overhead. As in the nearby synchro-
nization case, we assume each controller has deterministic tasks pre-
ceding the synchronous task. Each controller sends its earliest pos-
sible start time (𝑇0,𝑇1, or𝑇2) to 𝑅 before completing its deterministic
tasks. Once 𝑅 receives all synchronization requests, it determines
and broadcasts the earliest common start time,𝑇𝑚 =max(𝑇0,𝑇1,𝑇2),
to all controllers. Consequently, all controllers begin executing the
synchronous task at 𝑇𝑚 , achieving cycle-level synchronization at
the earliest possible time with zero-cycle overhead.

After sending 𝑇0/𝑇1/𝑇2, each controller C𝑖 achieves synchroniza-
tion when both of the following conditions are met:
• Condition I: The current absolute time reaches 𝑇𝑖 .
• Condition II: The earliest sync point 𝑇𝑚 has been received.
At this point, the SyncU checks whether the current time [indicated
by the Abs. Timer shown in Figure 3(a)] has reached 𝑇𝑚 [stored
in the Abs. Timer Buffer shown in Figure 3(a)], pausing the TCU’s
timer if necessary and resuming it precisely at 𝑇𝑚 .

4.4 Condition for Zero-Cycle Overhead

In real-world scenarios, there may not always be a sufficient number
of deterministic tasks available prior to a synchronization task to
mask the communication latency. In such scenarios, BISP may still
introduce synchronization overhead.

In the example shown in Figure 7, all controllers can accomplish
their tasks before synchronization at𝑇2, which forms the theoretical
earliest synchronization time. However, the duration of determin-
istic tasks of C2 is 𝐷2 =𝑇2 − 𝐵2 < 𝐿2, which is insufficient to hide
the sync communication latency 𝐿2 between C2 and 𝑅. Thus all
controllers involved cannot synchronize until 𝑇 ′

2 , resulting in a
synchronization overhead of 𝐿2 − 𝐷2.

In this case, the actual earliest possible start time for C0, C1, C2
is max(𝑇 ′

0 ,𝑇
′
1 ,𝑇

′
2 ) =𝑇 ′

2 , which exceeds the theoretical earliest start
time 𝑇2. As a result, achieving zero-cycle overhead is impossible.
More generally, we can conclude that zero-cycle overhead can be
realized if and only if the actual earliest start time is the same with
the theoretical earliest start time, formally expressed as max({𝐵𝑖 +
𝐿𝑖 }) =max({𝑇𝑖 }).

5 Distributed Architecture

As a distributed QCA, Distributed-HISQ requires a network topol-
ogy tailored for quantum applications to minimize communication
overhead that could impair architectural scalability. In this sec-
tion, we first describe the topology design of Distributed-HISQ,
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Figure 5: Example timing diagrams of nearby (a) and remote (b) synchronization using BISP.
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Figure 6: Example instructions for nearby synchronization.
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Figure 7: Example timing diagram of remote synchronization

with non-zero overhead.

followed by an illustration of the router design, emphasizing its
routing mechanism.

5.1 Design of Topology

We design a hybrid topology in Distributed-HISQ, which consists
of a tree-like inter-layer topology and a mesh-like intra-layer topol-
ogy as shown in Figure 3(d). The controllers at the bottom layer
are coordinated by higher-level routers.

The tree-like inter-layer topology is adopted to minimize net-
work edges while also reducing communication hops at region-level.
For a connected graphwith𝑁 nodes, the minimum number of edges
is 𝑁 − 1, forming a tree since each controller has finite connections.

Receive Sync Msg

Children?

All Received?

Buffer the Time-Point

Calculate Max Time-Point

Destination?

Broadcast to All Children

Y

N

Y

N

YN

Send to Parent

Figure 8: Router actions of region-level synchronization.

The network’s maximum communication latency depends on the
topology graph’s diameter, which in a tree is 2 × ℎ, where ℎ is the
tree height. Hence, a balanced tree with minimal height is adopted
to reduce latency.

Additionally, Insight 3 indicates that the intra-layer topology
should mirror the qubit device topology, naturally resulting in a
mesh-like structure.

5.2 Routing Mechanism

Remote synchronization at region-level and nearby synchroniza-
tion, are two common scenarios (Section 2.1.4). While nearby syn-
chronization involves only direct communication between neigh-
boring controllers, region-level remote synchronization requires
routers with efficient routingmechanisms to reduce communication
latency.

The router incorporates a simple routing mechanism that lever-
ages the nature of tree topology (Figure 8).

(1) Upon receiving a message, it buffers the message if it is from
a child; otherwise, it broadcasts the message to all children.

(2) After receiving messages from all children, it computes the
maximum time-point (Section 4.3).

(3) If the message is destined for itself, it broadcasts the maxi-
mum time-point to all children; otherwise, it sends the time-
point to its parent.
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Figure 9: Hardware implementation of Distributed-HISQ.

Table 1: Overview of FPGA resource consumption of HISQ

on the control and readout board.

Type #LUTs #Block RAM
(32Kb per block)

#FF

Control Board 4,155 75 6,392

Readout Board 2,435 45 3,192

Event Queue (38bit x 1024) 86 1.5 160

6 Evaluation

6.1 Hardware Implementation

We implement Distributed-HISQ in a commercial distributed
quantum control system (named DQCtrl, Figure 9). The control
boards and readout boards, as shown Figure 3(b), form the leaf
nodes of Distributed-HISQ. The control board has eight XY chan-
nels for 𝑥/𝑦 rotations and 20 Z channels for flux control. The read-
out board comprises four pairs of input and output channels. Each
board is controlled by a single HISQ core. All control boards and
readout boards are connected using a back-plane, through which,
the readout board can connect to each control board, each with two
Low-Voltage-Differential-Signal (LVDS) channels and a dedicated
channel for global trigger distribution. Due to the limited connec-
tivity, we are not able to realize region-level synchronization.

The same microarchitecture as shown in Figure 3(a) is deployed
on both the control and readout board, with the only difference be-
tween them being the number of codeword queues, which matches
the amount of channels on each board. The same HISQ instruc-
tion set is used to control all the XY channels and Z channels on
the AWG boards, as well as measurement excitation and data ac-
quisition on the readout boards. Nevertheless, the same codeword
can produce entirely different behaviors on different boards. For
example, the instruction cw.i.i 1, 1 on the AWG applies an X
gate, while on the readout board it triggers a measurement result
discrimination. Such kind of implementation is a simple verification
of the adaptability of HISQ.

The HISQ implementation is characterized by its high efficiency
in FPGA resource utilization, as detailed in Table 1. A full 28-channel
control board requires only 4155 LUTs, 6392 FFs, and 2.46Mb of
Block RAM, while an 8-channel readout board uses 2435 LUTs, 3192
FFs, and 1.47Mb of Block RAM. For precise timing control, the TCU
operates at 250MHz, enabling a 4 ns resolution grid that improves
upon the classic 200MHz pipeline based on the PicoRV32I core [43].

Figure 10: Quantum software stack for Distributed-HISQ.

In the context of modern FPGAs, which offer vast logic and mem-
ory resources, the hardware cost of HISQ is minimal. Its compact
and efficient design ensures high scalability and straightforward
portability to other systems without concerns about logic complex-
ity becoming a bottleneck.

6.2 Qubit-Level Verification

To validate Distributed-HISQ on physical qubits, we developed
a full quantum software stack (Fig. 10) comprising the Quingo
programming framework [13], the MLIR-based Quingoc compiler,
QuantaCS control software, and the SISQ instruction set. The
Quingo framework integrates Python for data analysis with its na-
tive quantum language, which supports both high-level algorithms
and low-level calibrations. Quingoc compiles Quingo programs into
circuit-layer SISQ, which is then lowered to a hardware-agnostic,
pulse-level representation. Finally, a new compiler backend for
DQCtrl partitions the pulse-level program, generating HISQ bi-
naries, waveform tables, and configuration files for the control
hardware.

The target device is a superconducting quantum chip with 66
qubits and 110 couplers. Qubit operating frequencies range from
3.953GHz to 4.757GHz, with readout frequencies ranging from
6.220GHz to 6.560GHz. 66 XY channels, 176 Z channels, and 11
readout channels with each capacitively coupling 6 qubits, are used
to control and measure these qubits.

We conducted a series of calibration experiments on multi-
ple superconducting qubits to demonstrate the capabilities of
Distributed-HISQ. Figure 11 presents four selected experiments,
each designed to characterize a fundamental property of the con-
trol signals. Figure 11(a) shows a self-verification experiment for
the readout board. A measurement excitation pulse with a lin-
early increasing phase is emitted, and the response is collected,
IQ-demodulated, and integrated. This process yielded a characteris-
tic circular pattern in the IQ plane. The observed deviation from
an ideal circle arises from small but non-negligible interference
from adjacent qubits coupled to the same feedline. Figure 11(b) de-
picts a spectroscopy experiment to determine the qubit’s operating
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Figure 11: Four calibration experiments performed on

a superconducting qubit, which show the capability of

Distributed-HISQ controlling signal (a) phase, (b) fre-

quency, (c) amplitude, (d) timing and (a,c,d) pulse envelop.

frequency. An 𝑥-rotation pulse was applied at varying frequen-

cies, followed by a measurement of the qubit state, identifying the
qubit resonance at 4.62GHz. Figure 11(c) displays a Rabi oscilla-
tion experiment, performed to find the optimal pulse amplitude

for implementing a high-fidelity 𝑋 gate. Figure 11(d) presents a
measurement of the qubit relaxation time (𝑇1), which characterizes
the decay of the qubit’s excited state population over time. This
measurement yielded a relaxation time of 9.9 µs. For comparison,
we also measured the working frequency and relaxation time of
the same qubit using identical hardware but with an alternative
and more mature firmware and software stack, obtaining values
of 4.64GHz and 10.2 µs, respectively. The minor discrepancies are
well within the expected range attributable to the natural temporal
fluctuations of the qubit’s state. Collectively, the fact that all ex-
periments generated data conforming to their expected theoretical
patterns demonstrates that Distributed-HISQ can produce high-
fidelity qubit control signals with precise, real-time manipulation
of phase, frequency, amplitude, and timing.

6.3 Electronics-Level Verification

We designed two programs (Figure 12) that respectively run on a
control board and a readout board to verify the feasibility of BISP.
Both boards repeatedly execute sync instructions. Except for the
sync instruction, the readout board contains only deterministic
tasks, while the control board contains a non-deterministic task
– the waitr $1 instruction. The varied timing of control board
makes its progress unpredictable to the readout board. As such, we
emulated the as-needed synchronization scenario in DQCA.

# Control board  
addi $2,$0,120
addi $1,$0,0
waiti 1
cw.i.i 21,2
addi $1,$1,40
cw.i.i 20,2
waitr $1  
sync 2
waiti 8
cw.i.i 7,1
waiti 50
bne $1,$2,-28
jal $0,-44

# Readout board 
waiti 2
sync 1  
waiti 6
waiti 57       
cw.i.i 5,1   
jal $0,-20

non-deterministic
inner loop

outer loop

Figure 12: HISQ instructions running on the control and

readout boards. Note that since the two boards have different

triggering delays, we added a 57-cycle delay (the waiti 57)
before the synchronous operation of readout board to miti-

gate this difference.

waitr $1 waitr $1

Ch 1

Ch 2

Ch 3

Ch 4

Figure 13: Waveforms illustrating synchronization between

nearby control board and readout board.

The result of the instruction execution is shown in the waveform
diagram (Figure 13). Channels 1 and 2 of the oscilloscope reveal that
the start time of the control board’s sync increases by 120 ns in each
inner loop iteration, reflecting the increment of the register value
$1. The instructions requiring synchronization are highlighted in
yellow and blue (Figure 12) on both the control and readout boards,
corresponding to the yellow and blue pulses in Figure 13. As shown,
regardless of changes in $1, the yellow and blue instructions are
always executed synchronously at the cycle level.

6.4 Simulation-Level Verification

6.4.1 Simulation Platform. To enable efficient evaluation, we also
developed a simulator, CACTUS-Light, based on the open-source
QCA simulator CACTUS [14, 53], but with the microarchitecture
under investigation modeled at transaction level. CACTUS-Light
adds support for the synchronization module as proposed in Sec-
tion 4. It has been verified at two levels. The logical correctness is
verified using multiple small-scale benchmarks whose execution
produces expected quantum state or measurement results. The tim-
ing information in the simulation result is verified against the FPGA
implementation using Timing Event Logging Format (TELF) [53]
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Coupling Map XOR

Figure 14: Long-range CNOT gate between |𝜓1⟩ and |𝜓2⟩ based
on gate-teleportation [3]. Although SWAP gates can enable

a CNOT between |𝜓1⟩ and |𝜓2⟩, the circuit depth increases

linearly with qubit count. In contrast, this scheme maintains

constant circuit depth as the number of qubits grows.

data. In our evaluation, we set 20 ns (40 ns) for single (two)-qubit
gates, and 300 ns for measurements.

6.4.2 Benchmarks. We constructed two types of benchmarks.

(1) Near-term dynamic circuits. Qubit connectivity con-
straints in quantum devices have spurred extensive research
into qubit mapping and routing challenges [30, 40]. By sup-
porting arbitrary feedback operations, these constraints can,
in principle, be overcome using non-unitary dynamic cir-
cuits [3]. Figure 14 illustrates a circuit diagram for imple-
menting a long-range CNOT between two distant qubits via
dynamic circuits. This approach trades spatial resources for
temporal efficiency, utilizing additional ancilla qubits to elim-
inate cumbersome SWAP gates and achieve reduced circuit
depth. Based on this approach, we have converted several
static circuits from QASMBench [29] to dynamic circuits by
randomly substituting CNOTs between non-adjacent qubits
with long-range CNOTs. Subsequently, we convert these
OpenQASM [5] programs into HISQ programs to serve as
benchmarks.

(2) Logical 𝑇 gate-based QEC circuits. With the long-term
goal of achieving FTQC, various QEC protocols have been
developed, with the surface code recognized as a leading
candidate [8, 9]. Logical 𝑇 gates are both resource-intensive
and frequent in this protocol [9, 50]. Implementing a logi-
cal 𝑇 gate involves a logical feedback operation (Figure 2),
making it an ideal case to evaluate Distributed-HISQ’s per-
formance in QEC experiments. We construct and validate
logical𝑇 gates using lattice surgery [19] with Stim [15], then
convert these circuits into HISQ programs. As our focus is
synchronization efficiency, we do not implement error de-
coding, but model its latency by inserting wait instructions
based on existing hardware decoder data [2], assuming each
router has a dedicated decoder. Given the high overhead
of magic state distillation, we assume pre-prepared magic
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Figure 16: Fidelity comparison between Distributed-HISQ

and baseline.

states and only simulate the logical feedback portion of the
𝑇 gate.

6.4.3 Baseline. As the experiment baseline, we implemented the
lock-step synchronization scheme as proposed in [18, 51]. The
control microarchitecture of each controller is identical to that of
Distributed-HISQ. A central controller orchestrates the execu-
tion of all other controllers with a star topology. This approach
limits the flexibility of feedback operation execution, particularly
under conditions with numerous concurrent feedback operations.
In contrast, our proposed scheme enables asynchronous execution
of concurrent feedback operations, aligning them only when re-
quired. In simulation, we assume unlimited connectivity for the
baseline and treat the communication latency of a feedback oper-
ation as constant, regardless of the number of qubits. In practice,
however, this assumption is unrealistic, and thus our simulation
results actually overestimate the performance of the baseline.

6.4.4 Results Analysis. Figure 15 shows the normalized end-to-end
runtime of a HISQ program, demonstrating that Distributed-HISQ
reduces execution time by an average of 22.8%. The reason is that
there is no simultaneous feedback in this benchmark, making the
advantage of Distributed-HISQ not significant. On the other hand,
the communication latency of Distributed-HISQ grows as the
system scale up, but we assume constant communication latency in
baseline. As such, the performance of Distributed-HISQ is worse
than baseline for “bv” benchmark.

6.4.5 Impact on Fidelity. As an example to showcase the effect of
our reduced latency on fidelity, we consider the long-range CNOT
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circuit shown in Figure 14. We compare the infidelity between
Distributed-HISQ and baseline with the T1/T2 time ranging from
30 µs to 300 µs (Figure 16). It can be observed that Distributed-
HISQ constantly reduces infidelity around 5×. This effect is also
due to the ability to enable simultaneous feedback. In the baseline
scheme, all controllers are forced to follow the same program flow,
requiring the second set of measurements to occur after the con-
ditional 𝑋 gate. In contrast, Distributed-HISQ allows these mea-
surements to be performed immediately after the 𝐻 gates, thereby
reducing execution time.

7 Discussion

7.1 Adaptability of HISQ

While our current single-core DQCtrl implementation — where one
HISQ core controls all 28 ports on an FPGA — is adequate for many
tasks, it faces a potential instruction issue rate bottleneck [11] in
time-critical operations. To overcome this scalability problem, our
architecture allows for a multi-core configuration on a single FPGA.
By partitioning the control ports among multiple HISQ cores, we
eliminate the issuance bottleneck, ensuring robust performance for
computationally demanding experiments.

7.2 Scalability of Distributed-HISQ

The scalability of a quantum control architecture is determined
by various factors, including instruction issue rate, memory con-
sumption, and synchronization latency, and is ultimately limited
by its most critical bottleneck. While this work does not propose
a universally scalable quantum control architecture, it targets two
key challenges: achieving efficient synchronization and enabling a
lightweight hardware implementation for the digital control logic.
Distributed-HISQ utilizes a queue-based event timing mecha-
nism that compiles a single quantum program into independent
instruction streams for multiple controllers. These streams execute
in parallel and synchronize only on demand, significantly reducing
the instruction load on each controller. This partitioned execution
model enhances the efficiency of individual controllers, thereby im-
proving the overall scalability of the quantum control architecture.

8 Conclusion

We have presented Distributed-HISQ, a distributed quantum
control architecture addressing key challenges in scalability and
adaptability for evolving quantum hardware. Its core contributions
are twofold: a hardware-implementable yet expressive abstraction
layer, and an efficient synchronization scheme that provides near-
zero overhead and enhances compiler flexibility. We implemented
and verified the architecture on a realistic superconducting qubit
control system. Furthermore, simulation results demonstrate that
Distributed-HISQ reduces execution overhead and improves re-
sult fidelity. By effectively decoupling instruction execution while
maintaining precise control, Distributed-HISQ provides a viable
pathway toward fully scalable quantum control architectures.
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