
CLASS: A Controller-Centric Layout Synthesizer
for Dynamic Quantum Circuits

Yu Chen1,2,†, Yilun Zhao1,2,†, Bing Li3, He Li4, Mengdi Wang1, Yinhe Han1, and Ying Wang1,*

Research Center for Intelligent Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences1

University of Chinese Academy of Sciences2, Institute of Microelectronics, Chinese Academy of Sciences3, Southeast University4

Emails: {chenyu21b,zhaoyilun22b,wangmengdi,yinhes,wangying2009}@ict.ac.cn,libing2024@ime.ac.cn,helix@seu.edu.cn

Abstract—Layout Synthesis for Quantum Computing (LSQC)
is a critical component of quantum design tools. Traditional
LSQC studies primarily focus on optimizing for reduced circuit
depth by adopting a device-centric design methodology. However,
these approaches overlook the impact of classical processing
and communication time, thereby being insufficient for Dynamic
Quantum Circuits (DQC).

To address this, we introduce CLASS, a controller-centric
layout synthesizer designed to reduce inter-controller commu-
nication latency in a distributed control system. It consists of
a two-stage framework featuring a hypergraph-based modeling
and a heuristic-based graph partitioning algorithm. Evaluations
demonstrate that CLASS effectively reduces communication
latency by up to 100% with only a 2.10% average increase in
the number of additional operations.

Index Terms—quantum computing, layout synthesis

I. INTRODUCTION

Similar to the design of classical circuits and systems,
realizing conceptual quantum algorithms on actual devices
requires a multitude of complex design tasks [1]. One of the
most challenging design tasks is Qubit mapping [2], or Layout
Synthesis for Quantum Computing (LSQC) [3].

Prior LSQC studies have predominantly followed a device-
centric design methodology, with a primary focus on mini-
mizing the execution time of quantum operations on quantum
devices. As a result, substantial effort has been devoted to
reducing the number of SWAP gates induced by topological
constraints of physical qubits. [2]–[10].

While the device-centric methodology is effective for static
quantum circuits, it falls short in optimizing for Dynamic
Quantum Circuits (DQC), a promising paradigm essential for
various quantum experiments [11]–[15]. The primary reason
is that a quantum program’s execution time depends on the
instruction processing time on Quantum Control Processors
(QCPs) [16]. In static circuits, this processing time is com-
parable to the duration of quantum device operations (cf.
Sec. II-D), making the device-centric approach reasonable. In
contrast, DQCs often involve frequent mid-circuit measure-
ments and feedforward operations [11], [12], introducing ad-
ditional latency that cannot be captured by on-device quantum
operations. Therefore, a controller-centric design methodology
becomes essential to accurately account for the total execution
latency on QCPs.

*Corresponding author.
†Equal contribution.

A. Controller-Centric LSQC Challenge

Achieving quantum advantage requires scaling up to thou-
sands or even millions of qubits [17], [18]. To support such
large-scale quantum systems, it is natural to adopt a distributed
control architecture composed of numerous QCPs.

When executing DQCs on distributed control systems, inter-
controller communication becomes a critical performance bot-
tleneck. Specifically, feedforward operations on certain qubits
may depend on measurement outcomes from qubits managed
by different QCPs. As a result, inter-controller communication
is required to exchange measurement results or branching
flags—an expensive operation in quantum computing due to
the limited coherence time of qubits. Moreover, the latency of
such communication inevitably increases with system scale.

To mitigate this overhead and preserve execution fidelity,
two complementary approaches can be considered. On the
hardware side, latency can be reduced through improved com-
munication protocols and specialized interconnects. On the
software side, the mapping of logical qubits to controllers—
determined by the layout synthesizer—plays a crucial role. For
instance, if all qubits involved in a feedforward operation are
assigned to the same controller, the operation can be executed
locally, eliminating inter-controller communication entirely.

This leads to a clear design objective for controller-centric
layout synthesis:

Design Goal

For each measurement-feedforward operation, the involved
qubits should be mapped to a set of controllers that
minimizes inter-controller communication latency.

Unfortunately, existing LSQC solutions are designed with-
out considering the above objective, making their modeling
approaches difficult to adapt to this emerging problem. There-
fore, it remains an open challenge to design a controller-
centric layout synthesizer to optimize for lower inter-controller
communication latency.

B. Contributions

In this paper, we present CLASS, a systematic approach to
address the emerging LSQC challenge in distributed control
systems. Our key contributions are as follows:

ar
X

iv
:2

50
9.

15
74

2v
1

 [
qu

an
t-

ph
]

 1
9

Se
p

20
25

https://arxiv.org/abs/2509.15742v1

1. A controller-centric design methodology. Through de-
tailed analysis, we identify the instruction processing time
of quantum control systems as the dominant factor affecting
program execution time. This insight reveals that consider-
ing only on-device operation latency is insufficient when
designing tools for quantum computing.

2. CLASS: a Controller-centric LAyout SyntheSizer.
CLASS reformulates the LSQC problem as a hypergraph
partitioning task, enabling a concise and modular algo-
rithmic framework that can be seamlessly integrated into
existing layout synthesis pipelines.

3. Evaluation of CLASS. We evaluate CLASS across a
variety of DQC benchmarks, demonstrating its effectiveness
in reducing inter-controller communication latency. Com-
pared to existing synthesizers, CLASS achieves an average
48.45% reduction in inter-controller communication hops,
with only a 2.10% average increase in additional operations.
Our implementation is open-source1.

II. BACKGROUND AND MOTIVATION

In this section, we commence with a concise overview of
existing layout synthesizers. Next, we introduce the concepts
of dynamic quantum circuits and quantum control systems,
providing examples to aid readers in understanding the specific
problem addressed in this paper. Basic concepts of quantum
computing theory have been omitted for brevity; readers
seeking foundational knowledge may refer to textbooks such
as Ref. [19] for an in-depth introduction.

A. Layout Synthesis for Quantum Computing

A quantum circuit2 is a graphical representation of a quan-
tum algorithm, consisting of a sequence of quantum gates or
operations applied to logical qubits3. Implementing two-qubit
gates requires physical connectivity, but the limited connec-
tivity of most quantum devices often renders quantum circuits
non-executable on such hardware. To address this challenge,
LSQC has become a critical component of modern quantum
design tools, which typically consists of two stages: (1)
generating an initial placement, which maps logical qubits to
physical qubits, and (2) producing a gate schedule, which de-
termines where and when to apply SWAP operations to enable
the circuit’s execution on the target device. Previous studies
on LSQC can be categorized into three main approaches. The
first employs heuristic search strategies, modeling the quantum
circuit as a directed acyclic graph (DAG) and using breadth-
first search-like methods for SWAP insertion [2], [20], [21].
The second formulates LSQC as a mathematical optimization
problem and solves it using specialized solvers [3], [10], [22]–
[24]. The third leverages machine learning techniques, such
as reinforcement learning, to tackle LSQC [9], [25]. Among
these, heuristic methods are the most widely adopted due
to their efficiency and stability. For example, SABRE [2],

1https://github.com/Zhaoyilunnn/dqc-map
2We use quantum circuit and quantum program interchangeably throughout

this paper.
3The term “logical” in this work does not refer to quantum error correction.

one of the most prominent heuristic layout synthesizers, has
been integrated into IBM’s Qiskit framework [26], the most
widely used quantum computing software. It is important to
note that all the aforementioned approaches primarily focus
on static quantum circuits without measurement feedforward
operations, making them complementary to our study.

B. Dynamic Quantum Circuits

|ψ⟩ H

|β00⟩
XM2 ZM1 |ψ⟩

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩

Fig. 1: Quantum circuit for teleporting a qubit.

|ψ1⟩ =
1
√
2

[
α|0⟩ (|00⟩+ |11⟩) + β|1⟩ (|10⟩+ |01⟩)

]
,

|ψ2⟩ =
1

2

[
α (|0⟩+ |1⟩) (|00⟩+ |11⟩) + β (|0⟩ − |1⟩) (|10⟩+ |01⟩)

]
=

1

2

[
|00⟩ (α|0⟩+ β|1⟩) + |01⟩ (α|1⟩+ β|0⟩)

+ |10⟩ (α|0⟩ − β|1⟩) + |11⟩ (α|1⟩ − β|0⟩)
]
.

(1)

Dynamic quantum circuits refer to quantum circuits with
mid-circuit measurements and feedforward operations [11].
Recent experimental studies have demonstrated the potential
of DQCs in various application scenarios, including short-
depth state preparation [27], device scale expansion [14], and
quantum fan-out gate implementation [12].

The power of DQC can be illustrated by quantum telepor-
tation, a technique for moving quantum states [19]. Fig. 1
shows the circuit diagram for teleporting a qubit from Alice’s
system (the top two lines) to Bob’s system (the bottom line).
Initially, Alice and Bob together generated an EPR pair and
each of them takes one qubit, that is, |β00⟩ = 1√

2
(|00⟩+ |11⟩).

Then the mission of Alice is to teleport an unknown state
|ψ⟩ = α|0⟩+ β|1⟩ to Bob by sending only classical informa-
tion, which can be achieved by the gates and measurement
feedforward operations. Specifically, Alice applies a CNOT
gate and a Hadamard gate to her qubits and send the measure-
ment results of |ψ2⟩ – as derived and shown on the right side of
Fig. 1 – to Bob. Depending on Alice’s measurement outcome,
Bob could recover the state |ψ⟩ by applying corresponding
operations. For example, if the measurement result is 01 then
Bob can fix up his state by applying the X gate.

C. Quantum Control Systems

Although the immense value of DQCs has long been
recognized, only recent advancements in control systems have
enabled DQCs to be flexibly programmed and executed on
real machines, given their stringent requirements for real-time
classical processing capabilities [13], [28]. A quantum control
system is a specialized classical system composed of hardware
and software designed to control quantum devices. Quantum
circuits are compiled into quantum control instructions and

https://github.com/Zhaoyilunnn/dqc-map

then executed by the control system [29]. Therefore, it is easy
to comprehend the following insight:

Insight

Quantum program execution time is determined by the
instruction processing time in the quantum control system.

With the number of qubits increases, quantum control sys-
tems evolve to a distributed architecture as shown in Fig. 2(a),
which includes a group of QCPs interconnected via some
routers [30], [31].

Taking the program shown in Fig. 2(b) as an example,
performing a measurement feedforward task in the control
system can involve diverse communication paths determined
by the mapping between qubits and controllers. For example,
the local feedforward block represents a scenario where q0 and
q1 are managed by the same QCP. In this case, the feedforward
process involves no inter-controller communication. By con-
trast, if qubits q0 and q1 are managed by separate QCPs (the
inter-controller feedforward block), the measurement result C0

may involve multiple communication hops.

(a) (b)

QCP QCP QCP

QCP QCP QCP

Router Router

Qubits

Lo
ca

l F
ee

df
or

wa
rd

Inter-Controller

Feedforward
Fig. 2: (a) Schematic of a distributed quantum control system. (b)
Source program of dynamic quantum Fourier transform [12], [32].

D. Problem and Motivation

Local Controller 0

Local Controller 1

Common Router

Local Controller 0

Timeline for an inter-controller feedforward control

Timeline for an intra-controller feedforward control

QCP execute instructions

Execute single/two-qubit gates

Execute measurement operations

Conditional logic and branching

Inter-controller communication

(a)

(b)

Fig. 3: The latency breakdown for intra- and inter-controller feedfor-
ward.

Current quantum devices are constrained by limited qubit
lifetimes, typically on the order of hundreds of microseconds

for state-of-the-art superconducting qubits. Reducing the ex-
ecution time of quantum programs to mitigate errors from
decoherence has thus become a key objective. The lifecycle
of a quantum control instruction can be divided into two
stages based on current QCP designs [16], [29]: (i) fetching,
decoding, and queuing the quantum event until it is emitted
to the quantum-classical interface (QCI), represented by blue
blocks; and (ii) executing pulse waveforms on quantum de-
vices, where quantum gates are shown as green blocks and
measurements, including acquisition and waiting for results,
are represented by purple blocks. For static circuits without
mid-circuit measurements, the execution time of quantum
programs can be effectively approximated by the quantum
device time, as the processing time on QCPs is pipelined
with the pulse durations on the quantum device. Traditional
LSQC techniques thus focus on minimizing circuit depth and
SWAP overhead to reduce quantum device time. However,
this approach is insufficient for DQCs, where a quantum gate
instruction may depend on prior measurement results and
associated classical processing and QCP time and thus cannot
be well-hidden by pulse durations on the quantum device
(Fig. 3(a)). Therefore, it is necessary to reshape the existing
LSQC design methodology from device-centric to controller-
centric.

In this work, we identify a unique optimization opportunity
for the layout synthesis of DQCs. Specifically, intra-controller
feedforward, where measurement and dependent qubits are
managed locally by the same controller, avoids inter-controller
communication, reducing latency (Fig. 3(a)). In contrast, inter-
controller feedforward potentially requires communications
between different controllers with extended latency (Fig. 3(b)).
Existing studies validate this latency difference. For example,
Ref. [33] reports a branching latency of ∼500 ns in distributed
systems with a central router, while intra-controller feedfor-
ward latency is as low as 92 ns [29] and can reach 50 ns in
leading industry products [34]. Motivated by this discrepancy,
this work aims to design a layout synthesizer that minimizes
inter-controller communication latency.

III. APPROACH

In this section, we present the design of CLASS. We begin
with Type-I DQCs, which are characterized by the absence of
connectivity constraints and the replacement of CNOT gates
with measurement and feedforward operations, significantly
reducing circuit depth. A notable example is the dynamic
circuit for quantum Fourier transform (QFT) [35], a core
subroutine in numerous quantum algorithms [36], [37]. Next,
we address Type-II DQCs, which are subject to connectivity
constraints. For these circuits, the LSQC objectives are to
minimize both inter-controller communication latency and
circuit depth.

A. Type-I DQC

1) Motivational Example: To better understand the mod-
eling approach of CLASS, we first describe an illustrational
example based on a DQC-implementation of QFT as shown

(a)

(b) (c)

(d) (e)

1

1 1

2

2 2

3

3

4 34

4

1

2

22

31

1

3

3

4

4

4

1 2

3 4

Fig. 4: An illustrational example of the minimum-cut graph-
partitioning problem based on the 4-qubit DQC of QFT. (a) Circuit
diagram of a 4-qubit dynamic QFT; (b) Graph representation of
all feedforward operations; (c)-(e) Three different logical-to-physical
qubit mapping schemes: MQ

1 ,M
Q
2 ,M

Q
3 .

in Fig. 4(a). We denote logical qubits as q1, q2, . . . , qn, where
n is the total number of qubits in the circuit.
• Graphical representation of feedforward operations. In

Fig. 4(b), the feedforward operations from the example
circuit are extracted and represented as a graph. Nodes
correspond to logical qubits, and an edge between two
qubits indicates that an operation on one depends on
the measurement of the other. For example, the gates
U1

(
π
2

)
,U1

(
π
4

)
, and U1

(
π
8

)
, acting on q2, q3, and q4,

are all conditioned on the measurement of q1, resulting in
three red edges: {q1, q2}, {q1, q3}, {q1, q4}. The involved
qubits form a conditional inter-dependent qubits (CIDQ)
set, denoted as D1 = {q1, q2, q3, q4}. Two other CIDQ sets
can be similarly identified: D2 = {q2, q3, q4} and D3 =
{q3, q4}. In a CIDQ set Di, the measured qubits form Dm

i ,
and the target qubits that depend on those measurements
form Dt

i . For instance, in D1, we have Dm
1 = {q1} and

Dt
1 = {q2, q3, q4}.

• Logical-to-physical qubit mapping schemes. Fig. 4(c)-(e)
depict different logical-to-physical qubit mapping schemes.
Consider two controllers C1 and C2 that manage physical
qubits {Q1, Q2} and {Q3, Q4} respectively. There is no
distinction between (i) {q1, q2} → C1, {q3, q4} → C2 and
(ii) {q1, q2} → C2, {q3, q4} → C1. Consequently, a little
thought shows that there are only three possible logical-to-
physical mappings:

(i) MQ
1 ≡ {q1, q2} → {Q1, Q2}, {q3, q4} → {Q3, Q4};

(ii) MQ
2 ≡ {q1, q3} → {Q1, Q2}, {q2, q4} → {Q3, Q4};

(iii) MQ
3 ≡ {q1, q4} → {Q1, Q2}, {q2, q3} → {Q3, Q4}.

(2)

Our goal is to find a logical-to-physical mapping that

minimizes inter-controller communication. Under MQ
1 , the

first (D1) and second (D2) feedforward operations require
sending measurement results of q1 and q2 from C1 to C2, while
the third (D3) is performed locally on C2. Thus, MQ

1 incurs 2
communication steps between C1 and C2. In comparison, MQ

2

and MQ
3 each result in 3 communication steps. Therefore,

MQ
1 is the optimal mapping with the lowest communication

overhead. Interestingly, as shown in Fig. 4(c)-(e), the number
of distinct edge colors crossing the two controllers matches
the number of communication steps. This observation forms
the basis of our approach: transforming the LSQC problem
into an equivalent graph-cut problem:

Core Idea
Layout synthesis for minimizing inter-controller commu-
nication latency is equivalent to a minimum-cut graph
partitioning problem.

2) Problem Formulation: The minimum-cut graph parti-
tioning problem can be formally described as follows.

• Hypergraph definition. Given a DQC, each feedforward
operation is extracted as a CIDQ set, forming a list LD,
where LD[i, j] denotes the jth qubit in the ith CIDQ set Di.
Using LD, we construct a hypergraph U(V,E) representing
all feedforward dependencies, as illustrated in Fig. 4(b).
Each node in V corresponds to a logical qubit, and each
hyperedge in E represents a CIDQ set connecting multiple
nodes.

• Graph partitioning. Consider a distributed quantum con-
trol system with k controllers {Ci}ki=1 managing m phys-
ical qubits {Qi}mi=1. Each controller is responsible for a
subset of physical qubits, defined by a mapping function
MC ≡ f : {Qi} → {Cj}. The hypergraph U is partitioned
into subgraphs, each assigned to a distinct controller. As a
result, some hyperedges are cut across multiple controllers.
Note that, a specific partitioning scheme is determined by
the logical-to-physical qubit mapping MQ, which is the
output of our layout synthesizer.

• Optimization objective. Cut hyperedges correspond to
inter-controller communication. Our objective is finding a
mapping MQ to minimize the total communication latency,
defined as the sum of latencies associated with all cut edges.

L(MQ) ≡
∑

Di∈LD

S(Di). (3)

Here, S(Di) denotes the communication latency for sending
measurement results from Dm

i to Dt
i , which depends on

the topology and communication protocol of the control
system. In our implementation, we use the minimum num-
ber of communication hops—determined by the controller
topology—to represent this latency, which we refer to as
Inter-Controller Communication Steps (ICCS).

3) Algorithm Design: While the example in Fig. 4 parti-
tions graph vertices into equally sized subsets, our problem

(a) (b) (c) (d)

Let
Then the gain of this relocation is

Controller 1 () Controller 2 ()

Controller 3 ()

Logical qubit

Physical qubit

Logical-physical mapping

Gain Calculation

Fig. 5: Examples of different movements and gain calculation during a qubit moving pass (line 7 in Alg. 2). For illustration purpose, we
assume all CIDQ sets involve only two qubits and the ICCS between any pair of controllers is uniformly 1. (a) A possible logical-to-physical
mapping MQ

current. (b) Example of qubit relocation and its gain calculation process. After relocating q7 to Q8, D1 and D2 belong to the
same controller, while D3 is cut by two controllers. Therefore, the gain is calculated by 1 + 1− 1 = 1. (c) Example of qubit exchange. (d)
Table of gains of all movements between C3 and A′ = {C1, C2}.

TABLE I: List of symbols used in our approach.
Symbol Description

Di
A specific CIDQ set representing a group of condi-
tionally interdependent qubits.

Dm
i Subset of qubits in Di that are measured.

Dt
i

Subset of qubits in Di that require measurements
from other qubits.

MQ Logical-to-Physical qubit mapping function: Maps
logical qubits to physical qubits on a device.

MC Qubit-Controller mapping function: Maps physical
qubits to their controlling QCPs.

LD A list of CIDQ sets derived from a given DQC.

S(Di)
Communication cost for executing feedforward op-
erations in Di.

L(MQ)
Objective function to minimize: The sum of S(Di)
over all CIDQ sets.

U

Undirected hypergraph where vertices represent log-
ical qubits and hyperedges represent CIDQ sets,
used to transform the LSQC problem into a graph
partitioning task.

Input DQC circuit

CIDQ Sets Extraction

Hypergraph Construction

Initial Placement

Qubit Movement Optimization

Layout Synthesis Result

Circuit Type
Type-I Type-II

ICCS-Aware Gate Scheduling

Fig. 6: The layout synthesis flow of CLASS.

does not require such balance. For instance, in a DQC with
12 qubits and two controllers, each managing up to 10 qubits,
assigning the two qubits involved in the fewest CIDQ sets
to one controller and the remaining 10 qubits to the other
may yield better results than an even split. This differentiates
our problem from traditional k-way graph-partitioning prob-
lems [38]. To address this, we propose a two-stage heuristic
approach (Alg. 1), detailed as follows.
• Stage 1: Initialize MQ via greedy allocation of con-

trollers. First, we construct an undirected graph U based
on LD, where the vertices in U correspond to logical
qubits in a DQC. The graph U is a hypergraph, allowing
edges to connect multiple vertices, with each CIDQ set Di

represented as a hyperedge in U . Next, we traverse the

Algorithm 1: ICCS-Aware Initial Placement
Input : Controller-Qubit Mapping MC , List of CIDQ Sets LD

Output: Logical-Physical Mapping MQ

// Stage 1: Initialize MQ

1 U ←construct_graph(LD);
2 Initialize MQ(qi) as -1 for all qubits;
3 foreach logical qubit qi in the descending order of degrees in U do
4 controller score← {};
5 foreach qj in the neighbors of qi in U do
6 Qj ←MQ(qj);
7 if Qj ̸= −1 then
8 Cj ←MC(Qj);
9 controller score[Cj]← controller score[Cj] + 1;

10 if controller score is not empty then
11 Find Ci with the maximum score in controller score;
12 else
13 Randomly choose a controller Ci for qi and its neighbors;
14 Randomly choose a physical qubit Qi from the physical qubits obtained

from the inverse mapping of MC ;
15 MQ.update(qi → Qi);

// Stage 2: Iteratively move qubits across the
allocated controllers to further reduce the number
of ICCSs

16 best score←∞;
17 foreach controller Ci in all k controllers A ≡ {Ca}ka=1 do
18 A′ ← A\{Ci}; // Obtain the controllers excluding

Ci

19 MQ
temp ← apply_qubit_moving_pass(MQ, Ci, A

′);
20 current score← L(MQ

temp);
21 if current score < best score then
22 MQ ←MQ

temp;
23 best score← current score ;

Algorithm 2: Qubit Moving Pass
Input : Logical-Physical Mapping MQ, Controller Ci, Set of Other

Controllers A′

Output: New Logical-Physical Mapping MQ
temp

1 MQ
temp ←M

Q;
2 MQ

current ←M
Q;

3 best movements← [];
4 gains← [];
5 movements←obtain_movements(Ci, A

′);
6 while movements ̸= ∅ do
7 Find a move that has the maximal gain g based on MQ

current;
8 movements.remove(move);
9 best movements.append(move);

10 gains.append(g);
11 MQ

current.update(move);
12 Find a l that maximize max gain←

∑l
j=1 gains[i];

13 if max gain > 0 then
14 MQ

temp.update(best movements[1 : l]);

vertices in U in descending order of their degrees – defined
as the number of CIDQ sets in which a qubit is included – to
prioritize the allocation of highly interdependent qubits to

the same controller. For each vertex (qubit), if its neighbors
have not been assigned to any controller, we randomly map
this qubit and its neighbors to the physical qubits of a con-
troller. Otherwise, we identify the controllers managing its
neighboring qubits and map it to the controller responsible
for the most neighbors (lines 2-14).

• Stage 2: Iteratively move qubits across the allocated
controllers to further reduce the number of ICCSs. Let
A ≡ {Ca}ka=1 denote the set of all k controllers. For each
controller Ci in A, we exclude Ci to form a new set A′ (line
18) and perform a qubit moving pass between Ci and A′,
generating a temporary mapping MQ

temp (line 19). The map-
ping with the lowest objective function value L(MQ

temp) is
selected as the final mapping (lines 20–23). Inspired by the
classic Kernighan–Lin (KL) algorithm [39], which searches
between two partitions, our approach (Alg. 2) generalizes
this by exploring movements between one controller (Ci)
and all remaining controllers (A′), thereby significantly
expanding the search space. Furthermore, unlike KL’s bidi-
rectional exchanges, our hybrid movement design includes
both bidirectional exchanges of qubits between Ci and A′

(Fig. 5(c)), as well as unidirectional relocations of a single
qubit from Ci to another controller in A′, provided this does
not exceed the capacity constraints of the target controller
(Fig. 5(b)). This design is enabled by the absence of a
balance constraint in our problem, thus the relocation of a
single qubit allows our algorithm to explore solution spaces
of unbalanced partitions. The gain of a movement, defined
as the change in the sum of ICCSs of the affected CIDQ
sets, is shown in Fig. 5(d), based on the initial mapping
in Fig. 5(a). In this example, a unidirectional relocation
achieves the highest gain, demonstrating the effectiveness of
incorporating hybrid movements and highlighting the poten-
tial benefits of removing balance constraints. In each itera-
tion, we iteratively select, apply, and remove the movement
with the greatest gain until all are considered (lines 6–11).
We then update MQ

temp with the maximum accumulated
gain and finalize the mapping (lines 12–14).

4) Complexity Analysis: In Stage 1, for each qubit (with
n in total), we traverse its neighboring qubits (with d on
average) and identify the controllers allocated to these qubits.
Then, we determine the controller that manages the largest
number of neighboring qubits among all k controllers. Thus,
the complexity of Stage 1 is O(n(k + d)). In Stage 2, for
each controller (with k in total), we perform a qubit moving
pass, where the complexity is determined by the number of
movements. The average number of qubits managed by a
controller is n

k . Since each qubit can either be moved from
Ci to any of the other controllers in A′ or exchanged with
any other qubit in A′, the number of movements per qubit is
(n+k). Therefore, the total number of movements per pass is
N = n

k (n+ k). These movements can be stored in a priority
queue, with the movement of maximum gain (move) placed
at the front. After applying move, the gains of movements
associated with the qubits involved in move need to be

recalculated. The total number of such associated movements
is M = d(n+k). Since updating an element in a priority queue
has a complexity of O(log(N)), the complexity of updating
gains is O(M · log(N)). Finally, the total complexity of stage
2 is O(k · N · M · log(N)) = O(k · nk (n + k) · d(n + k) ·
log(nk (n+ k))) = O(dn(n+ k)2log(nk (n+ k))).

B. Type-II DQCs

Connectivity constraints add complexity to minimizing
inter-controller communication. Since two-qubit gates require
physically adjacent qubits, SWAP gates are often inserted to
enable gate execution—a process known as gate scheduling [3]
or qubit routing [21]. Prior work has largely focused on
reducing circuit depth or the number of SWAPs, without
considering the underlying controller architecture. However,
inserting SWAPs may inadvertently split a CIDQ set across
multiple controllers, increasing # ICCS.

To address this challenge, we design a latency-aware gate
scheduler that minimizes both the number of additional SWAP
gates and inter-controller latency. The core idea is to use
inter-controller latency as a tie-breaker when multiple SWAP
insertion options have the same cost. Existing heuristic layout
synthesizers, such as those in Refs. [2], [6], [21], typically use
greedy search strategies that evaluate potential SWAP costs at
each step by considering future SWAP insertion possibilities
based on predefined cost functions. In some cases, multiple
SWAP options may yield identical or nearly identical costs.
This creates an opportunity to incorporate a controller-latency
metric to proactively guide SWAP selection, avoiding random

Algorithm 3: ICCS-Aware Gate Scheduling
Input : Controller-Qubit Mapping MC , List of CIDQ Sets LD , Initial

Logical-Physical Mapping MQ, Front Layer F , Device Coupling
Map G(V,E)

Output: Inserted SWAPs, Final Logical-Physical Mapping MQ
f

1 while F is not empty do
2 execute gate list← ∅;
3 Find executable gates in F and put them into execute gate list;
4 if execute gate list ̸= ∅ then
5 foreach gate in execute gate list do
6 Remove gate from F and put its successors in DAG into F if

the gates’ dependencies are resolved;
7 continue;
8 else
9 score = {};

10 swap candidate list = obtain_swaps(F,G);
11 for swap in swap candidate list do
12 MQ

temp =MQ.update(swap);
13 score[swap]←

obtain_depth_cost(F,DAG, G,MQ
temp);

14 similar swaps←obtain_min_score_swaps(score);
// ICCS-Aware Search

15 if len(similar swaps) > 1 then
16 iccs score← {};
17 for swap in similar swaps do

// Calculate ICCS score for these SWAPs

18 MQ
temp ←M

Q.update(swap);
19 LD

active ←
obtain_cidq_sets(F,DAG,G,MQ

temp);
20 iccs score[swap]←

∑
Di∈LD

active
S(Di);

21 swaps← obtain_min_score_swaps(iccs score);
22 swap← random_choice(swaps);
23 else
24 swap← similar swaps[0];
25 MQ.update(swap);

choices. Notably, this design philosophy can be generalized
to all existing gate schedulers, enabling them to account for
controller communication latency during the decision-making
process of whether and where to insert SWAPs. As a demon-
stration, we integrate our strategy into the gate scheduling
stage of SABRE [2] as it is widely used in the community.
Alg. 3 describes the process of ICCS-aware SABRE search,
where the directed acyclic graph (DAG) represents the ex-
ecution dependencies of operations in the circuit. The front
layer F is defined as the set of all two-qubit gates with no
unexecuted predecessors in the DAG, and the coupling map
G represents the topology of the target quantum device. For
a comprehensive explanation of its modeling methodology,
readers may refer to the original SABRE paper [2]. Here,
we omit some details of the original SABRE steps and focus
on explaining the relevant modifications that make it aware
of ICCS. When there are no executable gates in F , we first
identify all possible SWAPs associated with the qubits in F
and calculate a score for each SWAP to estimate its negative
impact on circuit depth (lines 9∼13). Next, we initiate an
ICCS-aware search procedure when multiple SWAPs yield
identical scores (lines 15–22). For each SWAP, we first obtain
a temporary mapping MQ

temp by applying the SWAP. We
then look ahead to identify a set of feedforward operations
whose dependencies in the DAG are resolved after applying
the SWAP and extract the corresponding CIDQ sets from LD

to construct a new list, LDactive. Subsequently, we calculate the
sum of the ICCSs associated with each CIDQ set in LDactive
to determine the iccs score of the SWAP. The SWAP with
the lowest iccs score is selected as the final choice.

IV. EVALUATION

A. Experiment Setup

1) Implementation: We implement CLASS as a framework
that interfaces with Qiskit. CLASS consists of ∼3k lines of
Python code and around ∼1k lines of modifications in the
Rust library of Qiskit. For Type-I DQCs, we set the outcome
of our initial placement as the initial layout of Qiskit transpiler.
For Type-II DQCS, we extend the SABRE implementation in
Qiskit and use the initial placement as the starting layout.

2) Benchmarks: Benchmarks are collected from
VeryQBench [32] and QASMBench [40], including dynamic
QFT, iterative phase estimation (PE), and the quantum
counterfeit coin (CC) problem. Additionally, we construct
randomized DQCs to cover a broader range of circuit patterns
by using the blocks from the randomized benchmarking
protocol [15] as basic components (Random).

3) Metrics: Several post-compilation metrics are collected
for performance comparison with Qiskit as our baseline,
including circuit depth, number of operations, and number of
ICCSs (# ICCS).

4) System Configurations: In our main results, we adopt a
star-topology controller architecture, where all controllers are
connected to a central router [30]. This topology is chosen as,
to the best of our knowledge, it is the only publicly available
solution that provides both a concrete controller topology

design and support for arbitrary feedforward operations. The
qubit device architecture is based on IBM’s 127-qubit quantum
processor, which features a heavy-hex-lattice topology. All
experiments were performed on a Linux server with 768 GB of
memory and two 32-core Intel(R) Xeon(R) Silver 4216 CPUs.

TABLE II: Comparison between CLASS and baseline (k = 4).
Benchmark Qubits Baseline CLASS

Operations Depth # ICCS # Operations Depth # ICCS

Type-I Benchmarks
qft 20 270 99 144 270 99 0
qft 30 555 149 335 555 149 0
qft 40 940 199 599 940 199 256
qft 50 1425 249 933 1425 249 576

Type-II Benchmarks
cc 12 159 109 24 153 110 6
cc 32 487 315 120 586 346 6
pe 20 441 171 125 434 184 19
pe 30 798 268 309 870 277 29
pe 40 1356 400 591 1444 430 309
pe 50 1938 505 911 2101 505 619
random 20 2096 726 339 2095 785 39
random 30 5551 1589 882 5738 1852 111
random 40 11480 2810 1500 11413 3016 912
random 50 19743 4710 2691 20140 4621 1812

Type-II Average - 4404.90 1160.30 749.20 4497.40 1212.60 386.20

B. Performance on Type-I DQCs

To the best of our knowledge, no prior work has addressed
the same problem as the one we tackle in this study. All
existing layout synthesizers fall back to generate a randomized
layout for Type-I DQCs. In contrast, CLASS is explicitly
designed to account for controller-architectural constraints,
aiming to minimize # ICCS. As shown in Table II, CLASS
achieves a significant reduction in # ICCS while keeping the
number of operations and circuit depth unchanged. Notably,
for QFT circuits with 20 and 30 qubits, CLASS achieves 100%
reduction of # ICCS, as the number of qubits is small enough
to be mapped entirely within a region managed by a single
controller. As shown in Fig. 7, for QFT circuits with 40 and
50 qubits, CLASS reduces # ICCS by 57.26% and 38.26%,
respectively.

C. Performance on Type-II DQCs

For DQCs with connectivity constraints, we also achieve
considerable reductions in inter-controller communication la-
tency, while introducing only a small overhead in terms of
the number operations and circuit depth. As summarized in
Table II, the post-compilation circuits of the baseline approach
and CLASS contain an average of 4404.9 and 4497.4 op-
erations, respectively. This indicates that CLASS introduces
only a modest overhead of approximately 2.10% in additional
CNOT gates. In contrast, CLASS reduces the average number
of ICCSs from 749.20 to 386.20, representing a substantial
reduction of approximately 48.45%, as shown in Fig. 8.

D. Impact of Controller Architecture

We have also verified the adaptability of CLASS to arbitrary
controller architecture. Specifically, we generate various con-
troller topologies with randomized and diverse inter-controller
communication latency. Subsequently, we transpile a 12-qubit
QFT circuit onto these architectures and compare the perfor-
mance between CLASS and baseline. On average, we obtain
46.71% reduction in terms of # ICCS.

qf
t-2

0
qf

t-3
0

qf
t-4

0
qf

t-5
0

Ave
ra

ge
0

50

100

Im
pr

ov
em

en
t

(%
) 10

0.0
0%

10
0.0

0%

57
.26

%

38
.26

%
58

.63
%

Fig. 7: ICCS reduction for Type-I DQCs.

cc
-12

cc
-32

pe
-20

pe
-30

pe
-40

pe
-50

ra
nd

om
-20

ra
nd

om
-30

ra
nd

om
-40

ra
nd

om
-50

Ave
ra

ge
0

25

50

75

Im
pr

ov
em

en
t

(%
)

75
.00

%
95

.00
%

84
.80

%
90

.61
%

47
.72

%

32
.05

%

88
.50

%

87
.41

%

39
.20

%

32
.66

% 48
.45

%

Fig. 8: ICCS reduction for Type-II DQCs.

Additionally, we conduct a study to evaluate the impact of
the number of controllers (denoted as k) on the performance
of CLASS. For a randomized DQC with 30 qubits, we vary
k from 4 to 8. As shown in Fig. 9, the improvement of
CLASS over the baseline decreases as k increases. This occurs
because increasing k leads to a higher number of subgraphs
in the graph-partitioning problem, naturally resulting in more
edge cuts between these subgraphs. In an extreme scenario
where each controller manages only a single qubit, inter-
controller communications cannot be eliminated, and our
approach would show no improvement over the baseline.

E. Scalability Analysis

Since our gate scheduler extends existing schedulers, its
runtime is primarily influenced by those schedulers. Thus we
focus our evaluation on the performance of our initial place-
ment algorithm. As analyzed in Sec. III-A, the complexity
of our algorithm exhibits polynomial growth with respect to
the number of qubits and controllers. In practical quantum
computing systems, the number of controllers is typically
fixed. Therefore, we set k = 5 and vary the number of
qubits in dynamic QFT circuits to profile the runtime of our
initial placement algorithm. As shown in Fig. 10, the runtime
increases from approximately 4 seconds to 7 seconds as the
number of qubits grows from 20 to 100. The efficiency of
our algorithm could be further enhanced by employing more
efficient system-level programming languages.

4 5 6 7 8
k

0

500

1000

#
 IC

CS

Baseline CLASS

Fig. 9: Impact of the number of controllers.

20 30 40 50 60 70 80 90 100
Number of Qubits

4

5

6

7

Ru
nt

im
e

(s
)

Fig. 10: Runtime of ICCS-Aware initial placement vs. # qubits.

V. DISCUSSION

A. Feasibility of CLASS in Quantum Error Correction

The feasibility of applying CLASS in future QEC scenarios
depends on whether topological constraints persist in next-
generation devices. Since many QEC protocols, such as sur-
face codes [41], are inherently designed to align with device
topology, SWAP-based qubit routing may no longer pose a
major challenge. In this context, CLASS may not be directly
applicable to QEC applications. Nevertheless, we believe the
controller-centric design methodology remains relevant due to
the continued importance of feedforward operations.

B. Feasibility of CLASS in Real Systems

It is currently challenging to deploy and evaluate CLASS
on real quantum systems. CLASS requires a distributed quan-
tum control architecture that supports arbitrary feedforward
operations, but the design of such systems remains an active
research area [31], [42]. Although industrial platforms such as
IBM Quantum Cloud can execute arbitrary DQCs, their control
systems are not publicly accessible. As a result, evaluating the
performance of CLASS on public quantum cloud platforms is
currently infeasible. To overcome this limitation, developing
an in-house control system becomes necessary—an effort that
is currently underway.

VI. CONCLUSION AND FUTURE WORK

This work addresses the challenges posed by inter-controller
communication delays in the layout synthesis of dynamic
quantum circuits (DQCs). For DQCs without connectivity
constraints, we model the problem as a minimum-cut task
in an undirected hypergraph and solve it using an efficient
heuristic approach. This solution provides the initial place-
ment for DQCs with connectivity constraints. To mitigate
the impact of SWAP insertions during gate scheduling, we
enhance existing schedulers with an effective mechanism. Our
evaluations demonstrate that our synthesizer achieves up to a
100% reduction in inter-controller communications, with only
a ∼2% increase in additional CNOTs.

ACKNOWLEDGMENTS

We thank Dr. Xiang Fu for his valuable feedback and in-
sightful discussions. This work is supported in part by National
Natural Science Foundation of China (NSFC) (62025404,
62222411, 62304037), National Key Research and Develop-
ment Program of China (2023YFB4404400), and the Nat-
ural Science Foundation of Jiangsu Province under Grant
BK20230828.

REFERENCES

[1] R. Wille, L. Burgholzer, S. Hillmich, T. Grurl, A. Ploier, and T. Peham,
“The basis of design tools for quantum computing: arrays, decision di-
agrams, tensor networks, and zx-calculus,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, pp. 1367–1370.

[2] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-
era quantum devices,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1001–1014.

[3] B. Tan and J. Cong, “Optimal layout synthesis for quantum computing,”
in Proceedings of the 39th International Conference on Computer-Aided
Design, 2020, pp. 1–9.

[4] W.-H. Lin, J. Kimko, B. Tan, N. Bjørner, and J. Cong, “Scalable optimal
layout synthesis for nisq quantum processors,” in Design Automation
Conference (DAC), 2023.

[5] R. Wille and L. Burgholzer, “Mqt qmap: Efficient quantum circuit map-
ping,” in Proceedings of the 2023 International Symposium on Physical
Design, 2023, pp. 198–204.

[6] C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-
optimal qubit mapping,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 360–374.

[7] S. Park, D. Kim, M. Kweon, J.-Y. Sim, and S. Kang, “A fast and scalable
qubit-mapping method for noisy intermediate-scale quantum computers,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
2022, pp. 13–18.

[8] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits to
ibm qx architectures using the minimal number of swap and h operations,”
in Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1–6.

[9] W. Tang, Y. Duan, Y. Kharkov, R. Fakoor, E. Kessler, and Y. Shi, “Al-
pharouter: Quantum circuit routing with reinforcement learning and tree
search,” arXiv preprint arXiv:2410.05115, 2024.

[10] J. Yang, Y. A. Kharkov, Y. Shi, M. J. Heule, and B. Dutertre, “Quantum
circuit mapping based on incremental and parallel sat solving,” in 27th
International Conference on Theory and Applications of Satisfiability
Testing (SAT 2024). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2024, pp. 29–1.

[11] A. D. Córcoles, M. Takita, K. Inoue, S. Lekuch, Z. K. Minev, J. M. Chow,
and J. M. Gambetta, “Exploiting dynamic quantum circuits in a quantum
algorithm with superconducting qubits,” Physical Review Letters, vol. 127,
no. 10, p. 100501, 2021.

[12] E. Bäumer, V. Tripathi, A. Seif, D. Lidar, and D. S. Wang, “Quantum
fourier transform using dynamic circuits,” Physical Review Letters, vol.
133, no. 15, p. 150602, 2024.

[13] IBM. (2022) Bringing the full power of dynamic
circuits to qiskit runtime. https://www.ibm.com/quantum/blog/
quantum-dynamic-circuits. [Online]. Available: https://www.ibm.com/
quantum/blog/quantum-dynamic-circuits

[14] A. C. Vazquez, C. Tornow, D. Riste, S. Woerner, M. Takita, and D. J. Eg-
ger, “Scaling quantum computing with dynamic circuits,” arXiv preprint
arXiv:2402.17833, 2024.

[15] L. Shirizly, L. C. Govia, and D. C. McKay, “Randomized benchmarking
protocol for dynamic circuits,” arXiv preprint arXiv:2408.07677, 2024.

[16] X. Fu, M. A. Rol, C. C. Bultink, J. Van Someren, N. Khammassi, I. Ashraf,
R. Vermeulen, J. De Sterke, W. Vlothuizen, R. Schouten, C. Almudéver,
L. DiCarlo, and K. Bertels, “An experimental microarchitecture for a
superconducting quantum processor,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
813–825.

[17] IBM. (2025) IBM quantum roadmap. https://www.ibm.com/roadmaps/
quantum/. [Online]. Available: https://www.ibm.com/roadmaps/quantum/

[18] Google. (2025) Google quantum computing roadmap. https://quantumai.
google/roadmap. [Online]. Available: https://quantumai.google/roadmap

[19] M. A. Nielsen and I. L. Chuang, “Quantum computation and
quantum information,” 2010. [Online]. Available: https://doi.org/10.1017/
CBO9780511976667

[20] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a case
for variability-aware policies for nisq-era quantum computers,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019, pp.
987–999.

[21] H. Fu, M. Zhu, J. Wu, W. Xie, Z. Su, and X.-Y. Li, “Effective and efficient
qubit mapper,” in 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[22] A. Molavi, A. Xu, M. Diges, L. Pick, S. Tannu, and A. Albarghouthi,
“Qubit mapping and routing via maxsat,” in 2022 55th IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE, 2022, pp.
1078–1091.

[23] S.-T. Huang, Y.-J. Jiang, S.-Y. Fang, and C.-K. Cheng, “Smt-based layout
synthesis for silicon-based quantum computing with crossbar architec-
ture,” in Proceedings of the 43rd IEEE/ACM International Conference on
Computer-Aided Design, 2024, pp. 1–8.

[24] I. Shaik and J. van de Pol, “Optimal layout synthesis for quantum circuits
as classical planning,” in 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[25] N. Quetschlich, L. Burgholzer, and R. Wille, “Compiler optimization
for quantum computing using reinforcement learning,” in 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2023, pp. 1–6.

[26] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman,
J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross et al., “Quan-
tum computing with qiskit,” arXiv preprint arXiv:2405.08810, 2024.

[27] K. C. Smith, A. Khan, B. K. Clark, S. Girvin, and T.-C. Wei, “Constant-
depth preparation of matrix product states with adaptive quantum circuits,”
PRX Quantum, vol. 5, no. 3, p. 030344, 2024.

[28] A. Cross, A. Javadi-Abhari, T. Alexander, N. De Beaudrap, L. S. Bishop,
S. Heidel, C. A. Ryan, P. Sivarajah, J. Smolin, J. M. Gambetta, and
B. R. Johnson, “Openqasm 3: A broader and deeper quantum assembly
language,” ACM Transactions on Quantum Computing, vol. 3, no. 3, pp.
1–50, 2022.

[29] X. Fu, L. Riesebos, M. Rol, J. Van Straten, J. Van Someren, N. Khammassi,
I. Ashraf, R. Vermeulen, V. Newsum, K. Loh et al., “eqasm: An executable
quantum instruction set architecture,” in 2019 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE, 2019,
pp. 224–237.

[30] G. Zettles, S. Willenborg, B. R. Johnson, A. Wack, and B. Allison,
“26.2 design considerations for superconducting quantum systems,” in
2022 IEEE International Solid-State Circuits Conference (ISSCC), vol. 65.
IEEE, 2022, pp. 1–3.

[31] F. Zhang, X. Zhu, R. Chao, C. Huang, L. Kong, G. Chen, D. Ding,
H. Feng, Y. Gao, X. Ni et al., “A classical architecture for digital quantum
computers,” ACM Transactions on Quantum Computing, vol. 5, no. 1, pp.
1–24, 2023.

[32] K. Chen, W. Fang, J. Guan, X. Hong, M. Huang, J. Liu, Q. Wang,
and M. Ying, “Veriqbench: A benchmark for multiple types of quantum
circuits,” arXiv preprint arXiv:2206.10880, 2022.

[33] R. S. Gupta, N. Sundaresan, T. Alexander, C. J. Wood, S. T. Merkel, M. B.
Healy, M. Hillenbrand, T. Jochym-O’Connor, J. R. Wootton, T. J. Yoder
et al., “Encoding a magic state with beyond break-even fidelity,” Nature,
vol. 625, no. 7994, pp. 259–263, 2024.

[34] Z. Instruments. (2024) Quantum feedback measurements.
https://www.zhinst.com/japan/en/applications/quantum-technologies/
quantum-feedback-measurements. [Online]. Available:
https://www.zhinst.com/japan/en/applications/quantum-technologies/
quantum-feedback-measurements

[35] R. B. Griffiths and C.-S. Niu, “Semiclassical fourier transform for quantum
computation,” Physical Review Letters, vol. 76, no. 17, p. 3228, 1996.

[36] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[37] A. Paler, “Quantum fourier addition simplified to toffoli addition,” Physi-
cal Review A, vol. 106, no. 4, p. 042444, 2022.

[38] W. L. Lee, D.-L. Lin, T.-W. Huang, S. Jiang, T.-Y. Ho, Y. Lin, and
B. Yu, “G-kway: multilevel gpu-accelerated k-way graph partitioner,” in
Proceedings of the 61st ACM/IEEE Design Automation Conference, 2024,
pp. 1–6.

[39] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partition-
ing graphs,” The Bell system technical journal, vol. 49, no. 2, pp. 291–307,
1970.

[40] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “Qasmbench: A low-
level quantum benchmark suite for NISQ evaluation and simulation,” ACM
Transactions on Quantum Computing, vol. 4, no. 2, pp. 1–26, 2023.

[41] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Sur-
face codes: Towards practical large-scale quantum computation,” Physical
Review A, vol. 86, no. 3, p. 032324, 2012.

[42] G. Huang, Y. Xu, N. Fruitwala, A. D. Rajagopala, K. Nowrouzi, R. K.
Naik, D. Santiago, and I. Siddiqi, “Qubic 2.0: A flexible advanced full
stack quantum bit control system,” in 2023 IEEE International Conference
on Quantum Computing and Engineering (QCE), vol. 2. IEEE, 2023, pp.
248–249.

https://www.ibm.com/quantum/blog/quantum-dynamic-circuits
https://www.ibm.com/quantum/blog/quantum-dynamic-circuits
https://www.ibm.com/quantum/blog/quantum-dynamic-circuits
https://www.ibm.com/quantum/blog/quantum-dynamic-circuits
https://www.ibm.com/roadmaps/quantum/
https://www.ibm.com/roadmaps/quantum/
https://www.ibm.com/roadmaps/quantum/
https://quantumai.google/roadmap
https://quantumai.google/roadmap
https://quantumai.google/roadmap
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://www.zhinst.com/japan/en/applications/quantum-technologies/quantum-feedback-measurements
https://www.zhinst.com/japan/en/applications/quantum-technologies/quantum-feedback-measurements
https://www.zhinst.com/japan/en/applications/quantum-technologies/quantum-feedback-measurements
https://www.zhinst.com/japan/en/applications/quantum-technologies/quantum-feedback-measurements

	Introduction
	Controller-Centric LSQC Challenge
	Contributions

	Background and Motivation
	Layout Synthesis for Quantum Computing
	Dynamic Quantum Circuits
	Quantum Control Systems
	Problem and Motivation

	Approach
	Type-I DQC
	Motivational Example
	Problem Formulation
	Algorithm Design
	Complexity Analysis

	Type-II DQCs

	Evaluation
	Experiment Setup
	Implementation
	Benchmarks
	Metrics
	System Configurations

	Performance on Type-I DQCs
	Performance on Type-II DQCs
	Impact of Controller Architecture
	Scalability Analysis

	Discussion
	Feasibility of CLASS in Quantum Error Correction
	Feasibility of CLASS in Real Systems

	Conclusion and Future Work
	References

