
Full State Quantum Circuit Simulation Beyond
Memory Limit

Yilun Zhao1,2, Yu Chen1,2, He Li3, Ying Wang1,*, Kaiyan Chang1,2, Bingmeng Wang4, Bing Li4 and Yinhe Han1

Research Center for Intelligent Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences1

University of Chinese Academy of Sciences2, Southeast University3, Capital Normal University4

Emails: {zhaoyilun22b,chenyu21b,wangying2009,yinhes}@ict.ac.cn, changkaiyan@live.com,
helix@seu.edu.cn,{2210502133,bing.li}@cnu.edu.cn

Abstract—Quantum circuit simulation (QCS) is essential in
the noisy intermediate scale quantum (NISQ) era when real
quantum computers are scarce. However, fully tracking the
states of a quantum system in QCS is highly challenging due
to the exponential memory growth that significantly limits the
computational reach of classical systems for QCS. Though it is
straightforward to leverage secondary storage to extend the scale
of QCS, excessive data movement between memory and storage
dominates the simulation time, making this solution unrealistic.
To tackle this challenge, we identify an intrinsic property of
QCS and implement an open-source framework to effectively
reduce data movement by >116×. We evaluate the framework
on various benchmarks and demonstrate 4× memory reduction
with only <20% overhead. On a memory constrained system,
we show that it extends the scale of QCS to 32 qubits (64 GB
memory requirement) while existing simulators are bounded to
28 qubits (4 GB memory requirement). Our implementation can
be accessed via https://github.com/Zhaoyilunnn/qdao.

Index Terms—Quantum Computing, Design Methodology,
Simulation

I. INTRODUCTION

The rapid development of real quantum computers [1], [2]
has sparked significant interest in both academic and indus-
trial sectors. However, quantum computers are still in their
prototype phase and we’re still in the early noisy intermediate
scale quantum (NISQ) [3] era. At present, access to real
quantum computers is limited due to their scarcity. Although
there are real machines such as IBM Quantum Service [4]
and Azure Quantum [5], publicly available machines often
contain only a few number of qubits. Meanwhile, researchers
and developers worldwide are queuing up to access these
machines, resulting in long wait times [6], [7]. To fuel rapid
development and verification, large-scale classical simulation
of quantum computing plays a crucial role for many different
research purposes [8], [9], including quantum arithmetic [10],
quantum machine learning [11], quantum chemistry [12], etc.

A quantum circuit composed of a series of quantum opera-
tions describes quantum computing [13]. To simulate quantum
computing, we use quantum circuit simulation (QCS), which
tracks the state vector of a quantum system as operations
execute on it [14]. However, the exponential growth of the
state vector size with the number of qubits makes it too large
to be stored in CPU memory (DRAM). This limits the scale

This work is supported in part by National Natural Science Foundation
of China (NSFC) (62222411, 62204164) and Zhejiang Lab under Grants
2021PC0AC01.

*Corresponding author.

of QCS and prompts us to consider leveraging the secondary
storage (SSD/HDD) for QCS. While this idea is plausible,
excessive data movement between memory and storage be-
comes a bottleneck that occupies most of the simulation time
(see Sec. II-B), making it far from being a practical solution.
This is because a quantum operation requires to update the
entire state vector before the next operation can be applied, as
previously shown in numerous works [15]–[18]. Consequently,
the entire state vector, which grows exponentially with #
qubits, must be traversed between memory and storage
for each operation.

In this paper, we theoretically prove that it is possible to
apply a subset of operations, which we refer to as a sub-
circuit, on a portion of the state vector before we apply
these operations to the remaining part. Therefore, each sub-
circuit requires a full traversal of the state vector across
memory and storage, rather than requiring a full traver-
sal for each operation. With this principle in mind, we
design a lightweight and portable framework that reshapes
storage-based QCS. By extensively evaluating our framework
on various benchmarks, we show that it effectively reduces
data movement. For example, on a readily available laptop,
data movement is reduced by more than 116×, leading to
successful full-state simulations of arbitrary quantum circuits
consuming 4× less memory with <20% data movement
overhead. Moreover, we show that our framework extends the
scale of QCS to 32 qubits, while existing simulators are all
bounded to 28 qubits. To summarize, the main contributions
of this paper are as follows.
• Theorem. For the first time, we provide a theorem with

rigorous proof to reveal that state vector traversal between
memory and storage can be done at sub-circuit-level rather
than operation-level.

• Methodology. We propose a novel storage-based simulation
method based on the above theorem, which is complemen-
tary to other methods and can be seamlessly integrated with
existing simulators to enhance their simulation capacity.

• Implementation. We implement a lightweight open-source
framework, extensive evaluation shows that it effectively
reduces data movement between memory and storage by
>116×. On a memory-limited system, it extends the scale
of QCS from 28 qubits to 32 qubits, making it a useful tool
that eliminates concerns about system memory constraints
for researchers and developers.

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
36

66

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on December 08,2023 at 05:34:59 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND AND MOTIVATION

A. Quantum Circuit Simulation

1) State Vector: State vector is the most common and
intuitive way to describe a quantum system and are widely
used in QCS. A state vector describes the complex vector
space (a.k.a., Hilbert space) associated to an isolated physical
system [13]. The simplest quantum mechanical system: a
qubit, has a two-dimensional state space, where |0⟩ and |1⟩
form an orthonormal basis. Then an arbitrary state vector can
be written |ψ⟩ = α0|0⟩+α1|1⟩. Generally, the state vector of
a system with n qubits is:

|ψ⟩ = α0|0 . . . 00⟩+ α1|0 . . . 01⟩+ · · ·+ α2n−1|1 . . . 11⟩. (1)

Quantum circuit is the model for describing sophisticated
quantum computations, which is essentially a sequence of
quantum operations, and QCS simulates how these opera-
tions manipulate the state vector. Quantum operations are
described by unitary matrices. For example, an important
single-qubit operation: the Hadamard operation is defined as
H ≡ 1√

2

[
1 1
1 −1

]
. Applying an H-operation on qubit 0 of a two

qubit system gives us1

[
α′
00
α′
01

]
=

1
√
2

[
1 1
1 −1

] [
α00

α01

]
, (2)

[
α′
10
α′
11

]
=

1
√
2

[
1 1
1 −1

] [
α10

α11

]
. (3)

For an n-qubit system, applying an H operation on qubit j
transforms the state amplitudes as [15]:[

α′
×···×0j×···×
α′
×···×1j×···×

]
=

1
√
2

[
1 1
1 −1

] [
α×···×0j×···×
α×···×1j×···×

]
, (4)

where we use ‘×’2 to indicate that the bits on the correspond-
ing positions are the same. It is clear that applying a quantum
operation requires an entire traversal of the whole state vector.

2) Graphical Models: Tensor network and decision dia-
gram are two representative graphical models that have been
proposed for QCS. Tensor network simulations are efficient
in simulating quantum circuits by representing them as a
network of tensors, with each tensor representing a specific
quantum operation. The goal of tensor network-based QCS
is to contract a tensor network into a single rank-0 tensor,
i.e., a scalar, which represents a single state amplitude. This
method is particularly suited for circuits where only a small
number of amplitudes need to be tracked [12], [19]. Decision
diagram (DD)-based simulation, on the other hand, is able to
perform full state simulation. Consider a quantum system of
n qubits qn−1, . . . , q1, q0. The first 2n−1 entries of the state
vector represent qn−1 = |0⟩ and the remaining 2n−1 entries
represent qn−1 = |1⟩. A decision diagram represents this
by a node labeled qn−1 connected to two successors qn−2,

1Throughout this paper, higher qubit indices are more significant (little
endian convention).

2For example,
[
α×0
α×1

]
represents either

[α00
α01

]
or

[α10
α11

]
.

representing the zero- and one-successors. This process is
repeated recursively until sub-vectors of size 1 remain [9]. By
exploiting the sparsity and similarity of quantum states, DD-
based simulation are shown to be more memory- and time-
efficient than state vectors [20]–[22].

3) Stabilizer Formalism: Stabilizer formalism is a mathe-
matical framework for describing and simulating a restricted
class of quantum circuits, known as stabilizer circuits [14],
[23], [24]. A quantum gate is a stabilizer gate if it is produced
from Clifford group {CNOT,H,S}. A quantum circuit is
called a stabilizer circuit if it is made of stabilizer gates applied
on input state |00 . . . 0⟩. The Gottesman–Knill theorem [25]
states that there exists classical algorithm that simulates any
stabilizer circuits in polynomial time.

4) Summary: In this work, our primary focus is on the
full-state simulation of general quantum circuits. As a result,
we will not discuss the stabilizer formalism and tensor net-
work as they are beyond the scope of our research. While
DD-based simulation and compression-assisted state vector
simulation [26] leverage the redundancy of quantum states
and quantum operations, they are not universally applicable
since redundancy is not a global property of quantum circuit
systems. This is mainly due to the presence of arbitrary single
or two-qubit rotation gates, which can be defined as Eq. (5)
based on OpenQASM specification [27]:

U3(θ, ψ, λ) =

[
cos θ

2
−eiλ sin θ

2
eiψ sin θ

2
ei(ψ+λ) cos θ

2

]
, (5)

where θ, ψ, λ are rotation angles. Irregular distributions of
state vectors can result from randomized rotation angles, as
illustrated in Fig. 1, making DD/compression based solutions
inefficient. In conclusion, simulating general quantum circuits
with full-state accuracy is inherently challenging because the
size of the state vector grows strictly following an O(2n)
pattern (as shown in Eq. (1)), thus significantly limiting the
scale of QCS and the selection of classical systems that can
be used.

0.2

0.0

0.2

Re
al

0 5 10 15 20 25 30
Index

0.2

0.0

Im
ag

in
ar

y

Fig. 1: State amplitudes distribution of a random 5-qubit
circuit.

B. Motivation

To break the memory limit of full-state QCS, it is rather
straightforward to utilize the large space of secondary storage

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on December 08,2023 at 05:34:59 UTC from IEEE Xplore. Restrictions apply.

devices to store the entire state vector. Despite this solution,
excessive data movement renders this method inefficient. This
is because current simulators [28]–[31] all adhere to a syn-
chronized simulation paradigm where the entire state vector
must be updated for each quantum operation before the
next one is applied. As a result, if we have g quantum
operations, we must copy the state vector g times between
memory and storage. To understand the impact of above
principle, we conduct an experiment for a 30-qubit random
quantum circuit with 633 quantum operations on system #
2 (See section IV-A2). For such a circuit, the size of state
vector is 230 × 16 Byte = 16 GB. Then we need to copy
633×16 GB ≈ 9.9 TB data between CPU memory and HDDs
during simulaiton. After breaking down the simulation time
into computation and data movement, we found 98.9% simu-
lation time is spent on data movement and the total simulation
time exceeds 2 days, making this simulation method extremely
inefficient.

As synchronized simulation introduces significant data
movement overhead, we propose to explore an asynchronous
simulation paradigm. Specifically, we ask, is it possible to
apply the next operation before current operation updates
the entire statevector? If realized, this approach brings sig-
nificant benefits. Firstly, we divide a state vector into multiple
parts with each being able to be stored in memory. Assuming
we can apply all operations to a part of state vector, move on
to the next one, and continue until all parts updated, then we
need to copy the complete state vector between memory and
storage only once rather than g times.

q0 : H

q1 : H

Fig. 2: A sample two-qubit quantum circuit.

Unfortunately, it is intrinsically challenging to implement
asynchronous simulation. Consider a simple system as shown
in Fig. 2, the state vector is |ψ⟩ = α00|00⟩ + α01|01⟩ +
α10|10⟩ + α11|11⟩. Applying an H gate on q0 follows
Eq. (2), (3). After computation of Eq. (2) is finished, can
we continue to apply the second H gate to the first part, i.e.,
[α00, α01]? According to Eq. (4), the second H gate on qubit
1 updates the state vector as:[

α′′
00
α′′
10

]
=

1
√
2

[
1 1
1 −1

] [
α′
00
α′
10

]
, (6)

[
α′′
01
α′′
11

]
=

1
√
2

[
1 1
1 −1

] [
α′
01
α′
11

]
. (7)

It is clear that the calculation of α′′
00 depends on both α′

00 and
α′
10, and similarly α′′

01 depends on α′
01 and α′

11. Therefore,
it is impossible to calculate the correct result of α′′

00 and
α′′
01 without knowing α′

10 and α′
11, i.e., we cannot apply the

second H gate before the first one updates the entire state

vector. While asynchronous approach may bring benefits, we
see that it also poses significant challenges, which motivate
our research.

III. QUANTUM DATA ACCESS OPTIMIZATION

A. Sub-circuits Generation

In this paper, we propose a method to implement asyn-
chronous simulation while ensuring the correctness of results.
The key insight behind is that, while each operation typically
corresponds to the traversal of an entire state vector, we
argue that each sub-circuit (see Definition 2) corresponds to
a single complete traversal between memory and storage.
This is essentially an intrinsic property supported by the
following theorem.
Definition 1. Given a quantum circuit Q with n qubits, where
the orthonormal computational basis set of the state space is
denoted as {|i⟩}, with i ∈ [0, 2n − 1], the state vector |ψ⟩ of
Q is defined as:

|ψ⟩ =
2n−1∑
i=0

αi|i⟩, (8)

where αi is the state amplitude associated with the basis state
|i⟩.
Definition 2. A sub-circuit S of Q is a series of operations on
m qubits of Q: {qs0 , qs1 , . . . , qsm−1

}, where {si}m−1
i−0 denotes

the indices of qubits in Q. The overall operator of S is a
2m × 2m unitary matrix denoted as US .
Theorem 1. ∀ S, ∃ a partition that divides the sets {αi} and
{|i⟩} into subsets, denoted by {σk}2

n−m−1
k=0 and {vk}2

n−m−1
k=0

respectively. These subsets are all of size 2m and are disjoint,
such that applying S on Q transforms the state vector of Q
by 2n−m independent transformations:

|ψ′⟩ =
2n−m−1∑
k=0

US ·
2m−1∑
j=0

σk(j)vk(j)

 , (9)

Proof.
For S operating on m qubits, we denote the orthonormal basis
of m-qubit system as |j⟩, where j ∈ [0, 2m−1], and the basis
of remaining (n−m)-qubits as |k⟩, where k ∈ [0, 2n−m − 1].
Then we have

|ψ⟩ =
2n−m−1∑
k=0

2m−1∑
j=0

αj,k|j⟩ ⊗ |k⟩. (10)

Thus the operations of S applying on |ψ⟩ gives us

|ψ′⟩ = (US ⊗ I) · |ψ⟩

= (US ⊗ I) ·

2n−m−1∑
k=0

2m−1∑
j=0

αj,k|j⟩ ⊗ |k⟩

=

2n−m−1∑
k=0

(US ⊗ I) ·

2m−1∑
j=0

αj,k|j⟩

⊗ |k⟩

=

2n−m−1∑
k=0

US ·
2m−1∑
j=0

αj,k|j⟩

⊗ I · |k⟩

=

2n−m−1∑
k=0

US ·
2m−1∑
j=0

αj,k|j⟩

⊗ |k⟩
 .

(11)

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on December 08,2023 at 05:34:59 UTC from IEEE Xplore. Restrictions apply.

S0 S1

q0 : RZ (2.976) RZ (−2.976)

q1 : Y

q2 : U2 (
π
4 ,

−π
2) U2 (

−π
2 ,

3π
4)

q3 : U3 (0.6156,
−π
2 , 1.837)

q4 :

G0
G3

G1

G2

(a) A sample 5-qubit quantum circuit.

0 00 00

0 00 01

0 00 10

0 00 11

0 01 00

0 01 01

0 01 10

0 01 11

0 10 00

0 10 01

0 10 10

0 10 11

0 11 00

0 11 01

0 11 10

0 11 11

1 00 00

1 00 01

1 00 10

1 00 11

1 01 00

1 01 01

1 01 10

1 01 11

1 10 00

1 10 01

1 10 10

1 10 11

1 11 00

1 11 01

1 11 10

1 11 11

Part I Part II

(b) Data access pattern of G0.

0 00 00

0 00 01

0 00 10

0 00 11

0 01 00

0 01 01

0 01 10

0 01 11

0 10 00

0 10 01

0 10 10

0 10 11

0 11 00

0 11 01

0 11 10

0 11 11

1 00 00

1 00 01

1 00 10

1 00 11

1 01 00

1 01 01

1 01 10

1 01 11

1 10 00

1 10 01

1 10 10

1 10 11

1 11 00

1 11 01

1 11 10

1 11 11

Part I Part II

(c) Data access pattern of G1.

0 00 00

0 00 01

0 00 10

0 00 11

0 01 00

0 01 01

0 01 10

0 01 11

0 10 00

0 10 01

0 10 10

0 10 11

0 11 00

0 11 01

0 11 10

0 11 11

1 00

1 01

1 10

1 11

1 00

1 01

1 10

1 11

1 00

1 01

1 10

1 11

1 00

1 01

1 10

1 11

00

00

00

00

01

01

01

01

10

10

10

10

11

11

11

11

Part I Part II

(d) Data access pattern of G2.

0 00 00

0 00 01

0 00 10

0 00 11

0 01 00

0 01 01

0 01 10

0 01 11

0 10 00

0 10 01

0 10 10

0 10 11

0 11 00

0 11 01

0 11 10

0 11 11

1 00 00

1 00 01

1 00 10

1 00 11

1 01 00

1 01 01

1 01 10

1 01

1 10

1 10

1 10

1 10

1 11

1 11

1 11

1 11

Part I Part II

11

00

01

10

11

00

01

10

11

(e) Data access pattern of G3.

Fig. 3: (a) shows a sample quantum circuit and sub-circuits. (b)-(e) depict the data access pattern when applying operations,
where the 25 = 32 state amplitudes are denoted by its binary indices and are arranged from top to bottom and from left to
right. The corresponding qubit indices of an operation are highlighted. Connected arrows denote a group of amplitudes that
must be calculated together.

Defining Vk ≡
(
US ·

∑2m−1
j=0 αj,k|j⟩

)
⊗ |k⟩, we see that

∀ p, q ∈ [0, 2n−m − 1], p ̸= q, calculating Vp is independent
of calculating Vq . Let σk ≡ {αj,k}2

m

j=0, vk ≡ {|j⟩ ⊗ |k⟩}2mj=0,
we see that the theorem has been proved.
Example 1. The state vector of a 5-qubit circuit is |ψ⟩ =∑25

i=0 αi|i⟩. Given a sub-circuit acting on q0, q1, q3 (indices
are bold), for k = 2, i.e., |k⟩ = |10⟩, we have

v2 ≡ {|000⟩ ⊗ |10⟩, |001⟩ ⊗ |10⟩, . . . , |111⟩ ⊗ |10}
= {10000⟩, |10001⟩, . . . , |11011⟩},

(12)

V2 ≡ US ·(α10000|10000⟩+ α10001|10001⟩+ · · ·+ α11011|11011⟩) .
(13)

Similar to Eq. (4), we use the same symbol ‘×’ to indicate
the bits on the corresponding positions are the same. Then we
can denote any of {Vk}3k=0 as:

Vk ≡US · (α×0×00| × 0× 00⟩+ α×0×01| × 0× 01⟩+
· · ·+ α×1×11| × 1× 11⟩).

(14)

Corollary 1. The transformed state amplitudes are de-
noted as {α′

i}, we have
∑2m−1

j=0 α′
j,k|j⟩ ⊗ |k⟩ =

(
US ·

∑2m−1
j=0 αj,k|j⟩

)
⊗ |k⟩. Based on Eq. (14), we have

α′
×···×0qsm−1

×···×0qs1
×···×0qs0

×···×

α′
×···×0qsm−1

×···×0qs1
×···×1qs0

×···×

...
α′
×···×1qsm−1

×···×1qs1
×···×1qs0

×···×

= US

α×···×0qsm−1
×···×0qs1

×···×0qs0
×···×

α×···×0qsm−1
×···×0qs1

×···×1qs0
×···×

...
α×···×1qsm−1

×···×1qs1
×···×1qs0

×···×︸ ︷︷ ︸
n-bit binary indices

2m

.

(15)

Example 2. Given Q with n = 5 qubits, for m = 4, we
have S0 and S1 (Fig. 3a). Fig. 3b-3e illustrate how we apply
each of the operations of S0 on the state vector, where the
elements are arranged from top to bottom and from left to
right. Connected arrows means the corresponding state am-
plitudes are inter-dependent. Clearly, it is shown that there’s
no dependency between part I and part II when applying any

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on December 08,2023 at 05:34:59 UTC from IEEE Xplore. Restrictions apply.

of {G0,G1,G2,G3}. Therefore, applying S0 on Q transforms
the state vector by 25−4 = 2 independent transformations.
Definition 3. When applying S on Q, compute units are the
subsets of state amplitudes {σk}2

n−m−1
k=0 (see Theorem 1).

State amplitudes within a compute unit (Definition 3) are
inter-dependent, while there’s no dependency between differ-
ent compute units. Consequently, we are able to store one
compute unit in memory, while the entire state vector persists
in secondary storage. For each sub-circuit, we sequentially
simulate it 2n−m times on all compute units, and thus the
entire state vector is copied only once between memory and
secondary storage. Therefore, we have the following corollary.
Corollary 2. Given a quantum circuit Q with n-qubit and g
operations with the ith operation applying on xi qubits, where
i ∈ [0, g − 1]. ∀ m ∈ [max(xi), n], ∃ l ∈ [1, g] such that
Q can be decomposed into l sub-circuits {S0,S1, . . . ,Sl−1}.
Then we can achieve deterministic memory reduction and data
movement reduction:

Memory Reduction =
sizeof(Original State Vector)

sizeof(Compute Unit)
= 2n−m, (16)

Data Movement Reduction =
Operations
Sub-circuits

=
g

l
. (17)

Example 3. For the sample circuit depicted in Fig. 3a, we
have n = 5, g = 10. Given m = 4, it is possible to decompose
the circuit into l = 2 sub-circuits, i.e., the blue (S0) and red
(S1) blocks. Then we are able to simulate the circuit using
25−4 = 2× less memory with 10/2 = 5× data movement
reduction.

B. Compute Unit Aggregation and Decomposition

While the effectiveness of our solution has been proven
in principle, obstacles still exist in its implementation. From
Eq. (15), we observe that the state amplitudes within a
compute unit may be discretely distributed in the original state
vector. However, we need to store the state amplitudes densely
in a 2m-dimensional continuous vector space.
Example 4. S0 and S1 are respectively depicted in
Fig. 4a and Fig. 4b. According to Eq. (15), the inter-
dependent state amplitudes, i.e., the compute units of S0 are
[α×0000, α×0001, . . . , α×1111]. Each compute unit corresponds
to one continuous sub-state vector, i.e.,

Compute Unit0 ←[α00000, α00001, . . . , α01111]

Compute Unit1 ←[α10000, α10001, . . . , α11111].
(18)

In contrast, compute units of S1 are [α0×000, α0×001, . . . ,
α1×111]. A little thought shows that each compute unit corre-
sponds to two separate continuous sub-state vectors, i.e.,

Compute Unit0 ←[α00000, . . . , α00111] + [α10000, . . . , α10111]

Compute Unit1 ←[α01000, . . . , α01111] + [α11000, . . . , α11111].
(19)

For S1, we need to aggregate and decompose discrete sub-
vectors into a contiguous vector. Besides, the original indices
are re-mapped to [×0000′,×0001′, . . . ,×1111′] in compute
units. Thus we use the virtual indices (highlighted in Fig. 4b)
{q′0, q′1, q′2, q′3} when simulating S1 on compute units.

To realize efficient aggregation and decomposition, we intro-
duce storage unit, which is the primitive sub-state vector that
will be copied between compute devices and storage devices.
Definition 4. ∀ t ∈ [0,m), the ith storage unit is a continuous
sub-state vector [αi·2t , αi·2t+1, . . . , α(i+1)·2t−1]. The number
of storage units is 2n−t.

Example 5. Again, we take Fig. 3a as an example. The
aggregation and decomposition processes of S0 and S1 are
illustrated in Fig. 4c-4d. We set t = 2 and thus we have
25−2 = 8 storage units. For S0, the first and second 4 storage
units are aggregated as compute units. And for S1, storage
units {0, 1, 4, 5} and {2, 3, 6, 7} are aggregated as compute
units. It can be seen that Eq. (18) and Eq. (19) are respected.

C. Implementation

Algorithm 1: Sub-circuits generation.
Input : Q // Original Quantum Circuit
Input : t // # Qubits in a storage unit
Input : m // # Qubits in a sub-circuit
Output: circ list // List of generated sub-circuits.
// List of operations in current sub-circuit.

1 op list = []
// Set of qubits that current sub-circuit acts on.

2 q set = {}
3 for op in Q.operations() do

// Set of qubits that current operation acts on.
4 op q set = {}
5 for q in op.qubits() do
6 if q.index() ≥ t then
7 q set.add(q)
8 if len(q set ∪ op q set) ≤ (m − t) then
9 q set = q set ∪ op q set

10 op list.append(op)
11 else
12 S = gen_sub_circ(op list)
13 circ list.append(S)
14 op list = [op]
15 q set = op q set
16 if op list then
17 S = gen_sub_circ(op list)
18 circ list.append(S)
19 return circ list

To this end, we leverage Corollary 2 to implement
a Quantum Data Access Optimization framework, named
QDAO (Fig. 5). Our framework consists of two stages.

1) Stage I: Given an n-qubit quantum circuit, we decom-
pose it into a list of m-qubit sub-circuits, which we describe
in Alg. 1. We track the contained operations (op list, line 1)
and involved qubits (q set, line 2) of each sub-circuit. While
traversing the operations of Q, we greedily add operations to
op list until the involved qubits exceed m and then we move
forward to next sub-circuit. Note that, we only track the qubits
outside the storage unit (line 5-7).
Example 6. For m = 5, t = 2, if we find a sequence of
operations on {q0, q2, q3, q5}, we consider it as a 5-qubit sub-
circuit even if it actually acts on 4 qubits.
We observe that m and t have an impact on the generation of
a sub-circuit. It is left to the users to control these parameters
based on their specific requirements. A detailed analysis can
be found in Sec. IV-C.

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on December 08,2023 at 05:34:59 UTC from IEEE Xplore. Restrictions apply.

q′0(q0) : RZ (2.976)

q′1(q1) :

q′2(q2) : U2 (
π
4 ,

−π
2)

q′3(q3) : U3 (0.6156,
−π
2 , 1.837)

(a) S0.

q′0(q0) : RZ (−2.976)

q′1(q1) : Y

q′2(q2) : U2 (
−π
2 ,

3π
4)

q′3(q4) :

(b) S1.

01100
...

01111

10000
...

10011

10100
...

10111

11000
...

11011

11100
...

11111

00000
...

00011

00100
...

00111

01000
...

01011

Compute Unit #0 Compute Unit #1

(c) Compute unit aggregation and decomposition of S0.

01100
...

01111

10000
...

10011

10100
...

10111

11000
...

11011

11100
...

11111

00000
...

00011

00100
...

00111

01000
...

01011

Compute Unit #0 Compute Unit #1

(d) Compute unit aggregation and decomposition of S1

Fig. 4: (a),(b) depict S0 and S1. The labels highlighted in distinct colors represent the positions of the qubits within the original
circuit. (c),(d) depict the compute unit aggregation and decomposition processes of S0 and S1. The state vector is partitioned
into 8 storage units (represented by squares). Compute units are represented by rounded rectangles. The corresponding storage
units of a compute unit are depicted using the same color.

18

Compute Unit #1

Compute Unit

Compute Unit #0

Storage Units

Stage I: Sub-circuits generation Stage II: Sub-circuits simulation

Backend Simulators

Memory

Secondary Storage

Fig. 5: An overview of QDAO framework.

Algorithm 2: Sub-circuits simulation.
Input : circ list // List of sub-circuits from stage I
Input : t // # Qubits in a storage unit
Input : m // # Qubits in a sub-circuit
Input : n // # Qubits in original circuit

1 for S in circ list do
2 for cu id in range(2n−m) do

// Aggregate storage units into a compute unit
(cu) from storage

3 cu = aggregate(S, t,m, cu id)
// Simulate a S on cu

4 cu = simulate(S, input = cu)
// Decompose cu into storage units and save

back to storage
5 decompose(S, sv, t,m, cu id)

2) Stage II: We repeatedly simulate each sub-circuit for
2n−m times as described in Alg. 2. In each simulation, we
aggregate storage units into a compute unit, simulate the sub-
circuit on the compute unit, decompose the compute unit into
storage units, and save them back to secondary storage. Both
aggregation and decomposition utilize the same algorithm as
calculating the indexes of involved state amplitudes when
applying an operation, which can be found in existing sim-

ulators.3

Example 7. As indicated in example 5, given S1 on qubits
{q0, q1, q2, q4}, m = 4, t = 2, and cu id = 0 (line 2 in
Alg. 2), the involved storage unit indexes are {0, 1, 4, 5}, which
is exactly the first group of indexes when applying a two-qubit
operation on {q0, q2}.
Moreover, it is worthy to mention that the functions
(simulate(), operations(), gen_sub_circ(), etc.)
in Alg. 1, 2 can be easily implemented on top of most of
existing simulators, making QDAO a portable tool for users to
enhance the simulation capacity on memory-limited systems.

IV. EVALUATION

A. Experiment Setups

1) Benchmarks: In this work, we primarily focus on
two types of quantum circuits: random quantum circuit
(RQC) [32], [33] and variational quantum circuit (VQC) [34],
[35] to demonstrate the universal effectiveness of QDAO, both
are widely studied and play important roles in NISQ era. RQC

3https://github.com/Qiskit/qiskit-aer/blob/main/src/simulators/statevector/
indexes.hpp

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on December 08,2023 at 05:34:59 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1
N

o
rm

a
li

z
e

d
 T

im
e

Computation Data Movement

QDAO-PyQuafu QDAO-Qiskit

(a) Results on system # 1.

0

0.5

1

N
o

rm
a

li
z
e

d
 T

im
e

Computation Data Movement

QDAO-PyQuafu QDAO-Qiskit

(b) Results on system # 2.

Fig. 6: Execution time breakdown of QDAO.

BENCHMARK # SUB-CIRCUITS (l) # OPERATIONS (g) DATA MOVEMENT REDUCTION
SYSTEM# 1

rqc_28_0 8 528 66.0×
rqc_28_1 10 573 57.3×
qnn_27_0 2 161 80.5×
qnn_27_1 2 161 80.5×
vqe_27 2 618 309.0×
vqe_28 2 641 320.5×
gs_28 2 55 27.5×
hls_28 2 84 42.0×
iqp_28 4 377 94.3×
qft_28 5 420 84.0×

AVERAGE 3.9 361.8 116.2×
SYSTEM# 2

rqc_30_0 8 589 73.6×
rqc_30_1 10 633 63.3×
qnn_29_0 2 174 87.0×
qnn_29_1 2 174 87.0×
vqe_29 2 664 332.0×
vqe_30 2 687 343.5×
gs_30 2 60 30.0×
hls_30 2 90 45.0×
iqp_30 3 396 132.0×
qft_30 5 480 96.0×

AVERAGE 3.8 394.7 128.9×

TABLE I: Results of sub-circuit generation.

is the key component of the random circuit sampling task
designed by Google to demonstrate quantum supremacy [32].
And VQC serves as the quantum part of the most promising
hybrid quantum-classical algorithms in NISQ era [36]. In
our evaluation, we select two representative VQCs: quantum
neural network (QNN) [11] circuits and variational quantum
eigensolver (VQE) circuits [35]4. More importantly, since
RQCs are randomly generated and rotation angles are train-
able parameters in VQCs, both of them contain amounts of
randomized rotation gates. Therefore, these benchmarks are
most suitable to demonstrate the effectiveness of our solution
(see Sec. II-A). In addition, we select several commonly used
subroutine benchmarks5 including quantum Fourier transform
(QFT), graph state (GS) circuit, hidden linear function (HLF)
and instantaneous quantum polynomial (IQP) circuit to show
the robustness of QDAO.

4VQC benchmarks are gathered from QASMBench [37].
5https://github.com/Qiskit/qiskit-terra/tree/main/qiskit/circuit/library

2) System Configurations: Our evaluation is done on two
different classical computer systems. System # 1 is a laptop
MacBook with a 2.6 GHz 6-Core Intel Core i7 processor and a
512 GB SSD. System # 2 is a Linux server with two 2.2 GHz
10-core Intel Xeon E5-2630 processors and 51 TB HDDs.
We evaluate QDAO on two pilot supported backends: IBM
Qiskit [28] and PyQuafu [31], as they can easily implement
required APIs (see Sec. III-C2). More backend simulators will
be supported in the future.

B. Overall Performance

In this section, we set m = n − 2, (i.e., we use 4× less
memory, see Corollary 1 in Sec. III-A), and t = n − 8.
The impact of m and t will be analyzed later in Sec. IV-C.
Firstly, we run sub-circuits generation for all benchmarks.
Table I summarizes # operations (g), # sub-circuits (l), and the
corresponding data movement reduction ratios (Eq. (17)). For
benchmarks used on system # 1 and # 2, the average reduction
is 116.2× and 128.9× respectively. Then we run simulations
for all benchmarks. Fig. 6 breaks down the normalized simu-
lation time into 1) computation on CPU and 2) data movement
between CPU memory and secondary storage. The results can
be concluded in three folds: 1) Data movement is no longer
the performance bottleneck. On average, the data movement
overhead of QDAO-PyQuafu is 19.3% and 33.5% on system
1 and # 2, respectively, making secondary storage-based
simulation paradigm a practical solution. 2) The proportion of
computation and data movement depends on the performance
of backend simulators and storage devices. For QDAO-Qiskit,
computation occupies 60.3% of simulation on average across
two systems, while computation of QDAO-PyQuafu occupies
73.5%. Also, we observe that the averaged proportion of data
movement (25.2%) on system # 1 is lower than system # 2
(40.9%). 3) QDAO is highly effective for RQCs and VQCs.
For RQCs and VQCs, the averaged data movement overhead
is 25.3%. As a comparison, the averaged overhead of sub-
routines is 44.7%.

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on December 08,2023 at 05:34:59 UTC from IEEE Xplore. Restrictions apply.

t

10 12 14 16 18 20 22 24 26

m

20
22

24
26

28

l

0
10
20
30
40
50
60
70

(a) Number of sub-circuits (l) with different m and t.

t

10 12 14 16 18 20 22 24 26

m

20
22

24
26

28

N
or

m
al

iz
ed

 O
ve

rh
ea

d

0.0

0.2

0.4

0.6

0.8

1.0

(b) Normalized data movement overhead (i.e., the shaded
part in Fig. 6) with different m and t.

Fig. 7: Impact of m and t on # sub-circuits (l) and data
movement overhead.

C. Impact of Parameter Settings on Performance

As indicated in Sec. III-C: Alg. 1, l depends on m and t. To
understand the relationship between l and (m, t), we conduct
experiments using a 30-qubit RQC. As shown in Fig. 7a, l
can be minimized by setting larger m and smaller t. The
reason behind can be intuitively illustrated as follows. Assume
we set m = n, then we only have one sub-circuit which
is equivalent to the original one. Moreover, setting smaller t
leaves less restrictions (see Alg. 1) on generating a sub-circuit
and thus leads to smaller l. According to Corollary 2, smaller l
leads to larger data movement reduction, however, it does not
necessarily result in less overhead and thus better performance.
As depicted in Fig. 7b, We can see that although smaller t
corresponds to smaller l, it can result in higher data movement
overhead. For example, given m = 26, the best performance is
achieved by setting t = 22 rather than t = 18. This is because
smaller t results in smaller size of a storage unit. For example,

when setting t = 10, there are 2n−t = 230−10 = 1048576
storage units, each with a size of 16 KB. Transmitting such
a huge amount of small files between secondary storage and
memory incurs significant performance degradation, which can
be avoided by setting t ≥ 20 (16 MB storage unit) according
to our evaluation. Moreover, the selection of m depends on
the requirement of users, setting smaller m reduces memory
requirement but sacrifices performance.

D. Comparison with Other Simulators
QDAO can be integrated in existing simulators to extend the

scale of QCS on memory-constrained systems. We conduct
experiments using VQE benchmarks on system # 1 (8 GB
memory) and compare QDAO with existing simulators includ-
ing IBM Qiskit [28], Google Cirq [29] and PyQuafu [31].
As shown in Fig. (8), existing simulators are bounded to
28 qubits (4 GB memory), while QDAO scales to 32 qubits
(64 GB memory). Note that 29 qubits actually consumes >8
GB memory as we need to store additional parameters (e.g.,
operation matrices). As a result, out-of-memory (OOM) issue
occurs from 29 qubits.

1

10

100

1000

10000

27 28 29 30 31 32

S
im

u
la

ti
o

n
 T

im
e

Number Of Qubits

QDAO-Qiskit Qiskit Cirq PyQuafu

Existing

Simulators

QDAO

Fig. 8: Comparison of QDAO with existing simulators.

Besides, we assess DDSIM6 [20]. We find that it simulates a
32-qubit VQE circuit for over 48 hours with growing memory
consumption and eventually encounters OOM, confirming that
exploiting redundancy is not effective for arbitrary circuits (as
explained in Sec. II-A4).

V. CONCLUSION AND FUTURE DIRECTIONS

In this work, we present QDAO, an open-source framework
that effectively utilizes secondary storage to alleviate the mem-
ory bottleneck of QCS. Our innovation lies in demonstrating
that state vector movement can be performed at the sub-circuit
level rather than the operation-level, and we provide a theorem
to support this claim. By evaluating QDAO on RQCs, VQCs,
and subroutine circuits, we observe a remarkable reduction
in data movement between memory and storage (>116×)
compared to vanilla operation-level implementation. Addition-
ally, we compare QDAO with state-of-the-art simulators and
demonstrate its effectiveness to extend the scale of QCS on
memory-limited systems. In future work, we aim to optimize
QDAO for large-scale supercomputing environments and as-
sess its potential for breaking classical computers’ maximum
simulation capacity.

6https://github.com/cda-tum/ddsim

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on December 08,2023 at 05:34:59 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] IBM. (2022) Expanding the IBM quantum roadmap to anticipate
the future of quantum-centric supercomputing. [Online]. Available:
https://research.ibm.com/blog/ibm-quantum-roadmap-2025

[2] ——. (2022) IBM unveils 400 qubit-plus quantum processor and
next-generation IBM quantum system two. [Online]. Available:
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-
Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

[3] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, 2018.

[4] IBM, “IBM quantum.” [Online]. Available: https://quantum-
computing.ibm.com/

[5] Microsoft, “Azure quantum cloud service.” [Online]. Available:
https://azure.microsoft.com/en-us/products/quantum

[6] P. Das, S. S. Tannu, P. J. Nair, and M. Qureshi, “A case for multi-
programming quantum computers,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
291–303.

[7] L. Liu and X. Dou, “Qucloud: A new qubit mapping mechanism
for multi-programming quantum computing in cloud environment,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 167–178.

[8] T. Häner and D. S. Steiger, “0.5 petabyte simulation of a 45-qubit
quantum circuit,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’17. New York, NY, USA: Association for Computing Machinery,
2017. [Online]. Available: https://doi.org/10.1145/3126908.3126947

[9] R. Wille, L. Burgholzer, S. Hillmich, T. Grurl, A. Ploier, and T. Peham,
“The basis of design tools for quantum computing: arrays, decision
diagrams, tensor networks, and zx-calculus,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, pp. 1367–1370.

[10] H. Li, J. Liang, H. Fan, and Y. Tang, “Design space exploration for effi-
cient quantum most-significant digit-first arithmetic,” IEEE Transactions
on Computers, 2022.

[11] Z. Hu, P. Dong, Z. Wang, Y. Lin, Y. Wang, and W. Jiang, “Quantum
neural network compression,” in Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, 2022, pp. 1–9.

[12] H. Shang, L. Shen, Y. Fan, Z. Xu, C. Guo, J. Liu, W. Zhou, H. Ma,
R. Lin, Y. Yang et al., “Large-scale simulation of quantum compu-
tational chemistry on a new sunway supercomputer,” in 2022 SC22:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, 2022, pp. 175–188.

[13] M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum
information,” 2010.

[14] Y. Ding and F. T. Chong, “Quantum computer systems: Research for
noisy intermediate-scale quantum computers,” Synthesis Lectures on
Computer Architecture, vol. 15, no. 2, pp. 1–227, 2020.

[15] K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu, G. Arnold,
M. Richter, T. Lippert, H. Watanabe, and N. Ito, “Massively parallel
quantum computer simulator,” Computer Physics Communications, vol.
176, no. 2, pp. 121–136, 2007.

[16] A. Fatima and I. L. Markov, “Faster schrödinger-style simulation of
quantum circuits,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 194–
207.

[17] J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii, “Quantum
computing simulator on a heterogenous hpc system,” in Proceedings of
the 16th ACM International Conference on Computing Frontiers, 2019,
pp. 85–93.

[18] Y. Zhao, Y. Guo, Y. Yao, A. Dumi, D. M. Mulvey, S. Upadhyay,
Y. Zhang, K. D. Jordan, J. Yang, and X. Tang, “Q-gpu: A recipe of
optimizations for quantum circuit simulation using gpus,” in 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2022, pp. 726–740.

[19] Y. Liu, X. Liu, F. Li, H. Fu, Y. Yang, J. Song, P. Zhao, Z. Wang, D. Peng,
H. Chen et al., “Closing the” quantum supremacy” gap: achieving real-
time simulation of a random quantum circuit using a new sunway
supercomputer,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–12.

[20] A. Zulehner and R. Wille, “Advanced simulation of quantum compu-
tations,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 5, pp. 848–859, 2018.

[21] S. Hillmich, R. Kueng, I. L. Markov, and R. Wille, “As accurate as
needed, as efficient as possible: Approximations in dd-based quantum
circuit simulation,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 188–193.

[22] T. Grurl, J. Fuß, and R. Wille, “Considering decoherence errors in the
simulation of quantum circuits using decision diagrams,” in Proceedings
of the 39th International Conference on Computer-Aided Design, 2020,
pp. 1–7.

[23] C. Gidney, “Stim: a fast stabilizer circuit simulator,” Quantum, vol. 5,
p. 497, 2021.

[24] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer
circuits,” Physical Review A, vol. 70, no. 5, p. 052328, 2004.

[25] D. Gottesman, “The heisenberg representation of quantum computers,”
arXiv preprint quant-ph/9807006, 1998.

[26] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–24.

[27] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” arXiv preprint arXiv:1707.03429, 2017.

[28] Qiskit contributors, “Qiskit: An open-source framework for quantum
computing,” 2023.

[29] C. Developers, “Cirq,” Dec. 2022, See full list of authors
on Github: https://github .com/quantumlib/Cirq/graphs/contributors.
[Online]. Available: https://doi.org/10.5281/zenodo.7465577

[30] M. Developer, “Mindquantum, version 0.6.0,” March 2021. [Online].
Available: https://gitee.com/mindspore/mindquantum

[31] B. A. of Quantum Information Sciences., “PyQuafu.” [Online].
Available: https://github.com/ScQ-Cloud/pyquafu

[32] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[33] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding,
Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing
quantum supremacy in near-term devices,” Nature Physics, vol. 14, no. 6,
pp. 595–600, 2018.

[34] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Communications,
vol. 5, no. 1, p. 4213, Sep. 2014. [Online]. Available: http:
//www.nature.com/articles/ncomms5213

[35] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
Chow, and J. M. Gambetta, “Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets,” Nature,
vol. 549, no. 7671, pp. 242–246, Sep. 2017. [Online]. Available:
http://www.nature.com/articles/nature23879

[36] K. Bharti, A. Cervera-Lierta, T. Kyaw, T. Haug, S. Alperin-Lea,
A. Anand, M. Degroote, H. Heimonen, J. Kottmann, T. Menke et al.,
“Noisy intermediate-scale quantum (nisq) algorithms (2021),” arXiv
preprint arXiv:2101.08448, 2021.

[37] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “Qasmbench: A low-
level quantum benchmark suite for nisq evaluation and simulation,” ACM
Transactions on Quantum Computing, vol. 4, no. 2, pp. 1–26, 2023.

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on December 08,2023 at 05:34:59 UTC from IEEE Xplore. Restrictions apply.

