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Abstract—In recent years, quantum computing has un-
dergone significant developments and has established its
supremacy in many application domains. While quantum hard-
ware is accessible to the public through the cloud environment,
a robust and efficient quantum circuit simulator is necessary
to investigate the constraints and foster quantum computing
development, such as quantum algorithm development and
quantum device architecture exploration. In this paper, we
observe that most of the publicly available quantum circuit
simulators (e.g., QISKit from IBM, QDK from Microsoft,
and Qsim-Cirq from Google) suffer from slow simulation and
poor scalability when the number of qubits increases. To this
end, we systematically investigate the deficiencies in quantum
circuit simulation (QCS) and propose Q-GPU, a framework
that leverages GPUs with comprehensive optimizations to allow
efficient and scalable QCS. Specifically, Q-GPU features i)
proactive state amplitude transfer, ii) zero state amplitude
pruning, iii) delayed qubit involvement, and iv) lossless non-
zero state amplitude compression. Experimental results across
nine representative quantum circuits indicate that Q-GPU
significantly reduces the execution time of the state-of-the-
art GPU-based QCS by 71.89% (3.55× speedup). Q-GPU also
outperforms the state-of-the-art OpenMP CPU implementa-
tion, the Google Qsim-Cirq simulator, and the Microsoft QDK
simulator by 1.49×, 2.02×, and 10.82×, respectively.
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I. INTRODUCTION

Quantum computing is a promising computing paradigm
that has the potential to solve problems that cannot be
handled by classical computers in a feasible amount of
time [9]. In the past decade, there has been steady progress
towards building a large quantum computer. The number of
qubits in a real quantum machine has increased from 14 in
2011 [42] to 127 in 2021 [28]. IBM promises a 1000 qubits
quantum machine by the year 2023 [27]. Despite this rapid
development, current quantum computing is still positioned
in the Noisy Intermediate-Scale Quantum (NISQ) era where
the public has limited access to reliable quantum machines.
Thus, quantum circuit simulation (QCS) toolsets provide an
essential platform satisfying many needs, e.g., developing
algorithms with a large number of qubits, validating and
evaluating newly proposed quantum circuits, and design

space exploration of future quantum machine architectures.
In general, QCS is challenging as it is both compute-

intensive and memory-intensive [20], [38]. The reasons are:
i) fully and accurately tracking the evolution of quantum
system through classical simulation [16] requires storing
all the quantum state amplitudes, which carries a memory
cost that grows exponentially as the number of qubits in
the simulated quantum circuit increases, and ii) applying
a gate within a quantum circuit requires a traversal of
all the stored state amplitudes, leading to an exponentially
increase in computational complexity. Modern GPUs have
been used to fuel QCS in high-performance computing
(HPC) platforms. Specifically, when applying a gate to a
n-qubit quantum circuit, the 2n state amplitudes are evenly
divided into groups, and each group of amplitudes is updated
independently in parallel by GPU threads. However, the
promising parallelism of GPUs is diminished by the limited
GPU memory capacity. For example, simulating a quantum
circuit with 34 qubits requires 256 GB of memory for state
amplitudes, exceeding the memory capacity of any modern
GPUs.

There exist several prior works optimizing QCS, including
multi-GPU supported simulation [32], [35], OpenMP and
MPI based CPU simulation [24], [48], [55], and CPU-GPU
collaborative simulation [17], [18]. Most of these works
focus on distributed simulation while failing to exploit the
tremendous parallelism provided by GPUs due to the mem-
ory constraints. In particular, our characterization indicates
that the state-of-the-art GPU-based simulation [17], [18]
suffers from low GPU utilization when the number of qubits
in the quantum circuit is large. As a result, most state am-
plitudes are stored and updated on the CPU, failing to take
advantage of the GPU parallelization. Moreover, the static
and unbalanced allocation of state amplitudes introduces
frequent amplitude exchange between CPU and GPU, which
introduces significant data movement and synchronization
overheads.

In this paper, we aim to achieve high-performance, scal-
able, and general-purpose QCS using modern GPUs. We
propose Q-GPU, a framework that significantly enhances
the simulation performance for practical quantum circuits.
Q-GPU leverages GPUs as the main execution engine and



is featured with end-to-end optimizations to fully take ad-
vantage of the rich computational parallelism in GPUs, while
minimizing the amount of data movement between CPU and
GPU. First, instead of statically assigning state amplitudes
on the GPU and CPU as done in prior works [18], Q-
GPU dynamically allocates groups of state amplitudes on
the GPU and proactively exchanges the state amplitudes
between CPU and GPU. Doing so maximizes the overlap
of data transfer between CPU and GPU, thereby improving
the GPU utilization and reducing the GPU idleness. Second,
rather than using a single data compression algorithm to
compress all state amplitudes [55], we handle zero-valued
and non-zero state amplitudes differently and separately.
For zero amplitudes, we develop reordering algorithms to
greedily select gates that involve the least number of qubits.
This is built upon the observation that the less qubits that are
involved by any gates, the more zero-valued state amplitudes
can be pruned. For non-zero amplitudes, we implement
efficient lossless data compression on GPU to further reduce
data transfer. This paper makes the following contributions:

• We use the popular IBM QISKit-Aer with its state-of-
the-art CPU-GPU implementation [3], and conduct an in-
depth characterization of QCS. We observe that the simu-
lation performance degrades significantly as the number of
qubits increases due to the severe under-utilization of GPU
parallelism. To exploit GPU parallelism, we implement
dynamic state amplitude allocation that allows the GPU
to update state amplitudes. However, such an intuitive
implementation even consumes more execution time due
to the massive data movement between CPU and GPU.

• We propose Q-GPU, a framework comprising end-to-end
optimizations to mitigate the data movement overheads
and unleash the GPU capability in QCS. Specifically, Q-
GPU is featured with the following major optimizations:
i) dynamic state amplitudes allocation and proactive data
exchange between CPU and GPU, ii) dynamic zero state
amplitude pruning, iii) dependency-aware quantum gate
reordering to enlarge the potential of pruning, and iv)
efficient GPU-supported lossless compression for non-
zero amplitudes.

• We evaluate the proposed Q-GPU framework using nine
practical quantum circuits. Experimental results indicate
that in all circuits tested, Q-GPU significantly improves
the QCS performance. On average, it achieves 3.55×
speedup over the baseline. We also compare Q-GPU with
Google Qsim-Cirq [54] and Microsoft QDK [41], and
results show that Q-GPU approach achieves 2.02× and
10.82× speedups over Qsim-Cirq and QDK, respectively.

• We also test Q-GPU in both PCIe and NVLink con-
nected multi-GPU environments and the results show
2.97× and 2.98× speedups over the state-of-the-art
multi-GPU QCS. The Q-GPU simulator is released at:
https://github.com/Zhaoyilunnn/q-gpu.

II. BACKGROUND

A. Quantum Basics

Quantum computation is built upon the quantum bit or
qubit for short [44]. A qubit is a two-level quantum system
defined by two computational orthonormal basis states |0⟩
and |1⟩. A quantum state |ψ⟩ can be expressed by any linear
combination of the basis states.

|ψ⟩ = a0|0⟩+ a1|1⟩, (1)

where a0 and a1 are complex numbers whose squares rep-
resent the probability amplitudes of basis states |0⟩ and |1⟩,
respectively. Note that we have |a0|2 + |a1|2 = 1, meaning
that after measurement, the readout of state |ψ⟩ is either
|0⟩ or |1⟩, with probabilities |a0|2 and |a1|2, respectively.
The states of a quantum system are generally represented
by state vectors as

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
. (2)

For an n-qubit system, there are 2n state amplitudes.
Then, the quantum state |ψ⟩ can be expressed as a linear
combination

|ψ⟩ = a0...00|0 . . . 00⟩+ a0...01|0 . . . 01⟩+ · · ·+ a1...11|1 . . . 11⟩. (3)

Similarly, the state of a n-qubit system can also be repre-
sented by a state vector with 2n dimensions as

|ψ⟩ = a0...00


1
0
...
0

+ a0...01


0
1
...
0

+ · · ·+ a1...11


0
0
...
1

 =


a0...00
a0...01

...
a1...11

 .
(4)

Quantum computation describes changes occurring in this
state vector. A quantum computer is built upon a quantum
circuit containing quantum gates (or quantum operations),
and a quantum algorithm is described by a specific quantum
circuit. A quantum gate that acts on k qubits is represented
by a 2k × 2k unitary matrix.

Let us consider a 2-qubit system with a Hadamard
gate/operation operating on qubit 0. A Hadamard gate can
be represented as

H ≡
1
√
2

[
1 1
1 −1

]
. (5)

Then the state vector of this 2-qubit system is updated
through [

a′00
a′01

]
=

1
√
2

[
1 1
1 −1

] [
a00
a01

]
, (6)

[
a′10
a′11

]
=

1
√
2

[
1 1
1 −1

] [
a10
a11

]
. (7)

For an n-qubit system, when a H gate is applied to qubit j
the amplitudes are transformed as [15]:[

a′×···×0j×···×
a′×···×1j×···×

]
=

1
√
2

[
1 1
1 −1

] [
a×···×0j×···×
a×···×1j×···×

]
(8)

https://github.com/Zhaoyilunnn/q-gpu


Therefore, the indices of every pair of amplitudes have either
0 or 1 in the jth bit, while all other bits remain the same1.
Note that each pair of amplitudes can be updated in parallel.

B. Quantum Circuit Simulation (QCS)
There are several approaches to simulating a quantum

circuit, each featuring different advantages and drawbacks.
We summarize the three most widely used approaches below.

• Schrödinger style simulation: Schrödinger simulation
describes the evolution of a quantum system by tracking
its quantum state. It tracks the transformations of the state
vector according to Equation 8. Note that one can also
track the density matrix ρ = |ψ⟩⟨ψ|, which is useful when
measurement is required during simulation [16], [32]. In
this work, we only consider quantum measurements at the
end of circuits.

• Stabilizer formalism: Simulation based on the stabilizer
formalism is efficient for a restricted class of quantum
circuits [1], [16], [44]. Specifically, stabilizer circuits
(a.k.a Clifford circuits) can be simulated in O(poly(n))
space and time costs. Rather than tracking the state vector,
the quantum state is uniquely represented and tracked by
its stabilizers, which is essentially a group of operators
derived from the Clifford group. A detailed description
can be found in [1].

• Tensor network: Tensor network simulators are useful
when a single or few amplitudes of the full state vector
are being updated as tensor networks [26], [37], [39],
[40]. For example, one type of tensor network that are ex-
tremely common are matrix product states (MPS). When
applied to a single amplitude in Equation 3, the resulting
state resembles a long string of matrix multiplications

|ψ⟩ =
∑

j0...jn−1jn

aj0...jn−1jn |j0 . . . jn−1jn⟩

=
∑

j0...jn−1jn

Tr[Aj0 . . . Ajn−1Ajn ]|j0 . . . jn−1jn⟩
(9)

The matrices A (rank-2 tensors) in Equation 9 can be
thought of as a decomposition of the full coefficient tensor
a. Despite the restriction of returning a limited number of
amplitudes, tensor networks states are efficient as they
compress the dimension of the problem from O(2n) to
O(nd2) where d is the dimension of the individual tensors
in Equation 9.

Among all these simulation methods, Schrödinger style sim-
ulation is widely used as the mainstream simulation method
[4], [15], [18], [20], [24], [34], [48], [49], [52], [55]. Also,
industrial quantum circuit simulators such as IBM QISKit
[3], Google Qsim-Cirq [24], [52] and Microsoft QDK [41]
use full state vector simulations. Currently, there is no GPU
support in Qsim-Cirq and Microsoft QDK. Therefore, we
build Q-GPU using QISKit-Aer as it has the state-of-the-art
GPU support.

1“×” can be 0 or 1; the “×” in the same position of a×××××××0 and
a×××××××1 are the same.

Table I: List of quantum circuit benchmarks.
Abbrv. Application

hchain Linear hydrogen atom chain [53]
rqc Random quantum circuit [9]

qaoa
Quantum approximate

optimization algorithm [19]
gs Graph state [25], [31]
hlf Hidden linear function [11]
qft Quantum Fourier transform [30]

iqp
Instantaneous quantum

polynomial-time [12], [13]
qf Quadratic form [21]
bv Bernstein-Vazirani algorithm [8]

III. CHARACTERIZATION OF QCS

A. Quantum Circuit Benchmarks

In this paper, we target 9 representative quantum circuits
as listed in Table I.

• hchain: This circuit is a representative quantum chem-
istry application which describes a system of hydrogen
atoms arranged linearly [2], [7], [23], [43], [50]. This
circuit incorporates increased circuit depth and an early
entanglement in terms of total operations.

• rqc: The random quantum circuit from Google [9], [10]
is used to represent the quantum supremacy compared to
classical computers.

• qaoa: Quantum approximate optimization is a promising
quantum algorithm in the NISQ era that produces approx-
imate solutions for combinatorial optimization problems
[19].

• gs: This circuit is used to prepare graph states [5] that are
multi-particle entangled states. Examples include many-
body spin states of distributed quantum systems that are
important in quantum error correction [36].

• hlf: This benchmark circuit solves the 2D hidden linear
function problem [11].

• qft: The quantum Fourier transform circuit [30] is the
quantum analog of the inverse discrete Fourier transform.
It is an important function in Shor’s algorithm [51].

• iqp: The instantaneous quantum polynomial circuit
provides evidence that sampling the output probability
distribution of a quantum circuit is difficult when using
classical approaches [12], [13].

• qf: This circuit implements a quadratic form on binary
variables encoded in qubit registers. It is used to solve
the quadratic unconstrained binary optimization problems
[21].

• bv: This circuit implements the algorithm to solve
Bernstein-Vazirani problem [8].

B. Baseline QCS

In this paper, we use the popular IBM QISKit-Aer
simulator. We consider the state-of-the-art GPU-supported
simulation [18] in QISKit-Aer as our baseline. We run all
simulations on a server with dual 10-core Intel Xeon Silver
4114 CPUs at 2.2 GHz, 384 GB of memory, and an NVIDIA



P100 GPU with 16 GB of memory connected through PCI-
e. We have also evaluated Q-GPU using NVIDIA A100 and
V100 in Section V-D, and multi-GPU in Section V-E. We use
CUDA v10 and Nvprof [45] to conduct our characterization.
The baseline simulates quantum computations by iteratively
executing gate on the state vector. The actual computations
are mainly vector-matrix multiplications in the form of
Equation 8. The simulation in QISKit-Aer has three key
steps: 1) state vector partitioning, 2) static chunk allocation,
and 3) reactive chunk exchange.
Step 1: State vector partitioning: QISKit-Aer baseline
first partitions the state vectors into “chunks”. Chunk is the
granularity used in the simulator to update the state vector.
For illustrative purposes, let us assume we have a 7-qubit
circuit, i.e., there are in total 27 different state amplitudes
from a0000000 to a1111111. All the states are stored in a vector
(i.e., the state vector), and this state vector is partitioned into
8 chunks. Each chunk contains 16 state amplitudes as shown
in Figure 1. The three most significant bits are used to index
the chunks, and the remaining 4 bits are offsets within a
chunk.
Step 2: Static chunk allocation: After partitioning, these
chunks are allocated in GPU memory based on the capacity.
As illustrated in Figure 1, if a GPU can only store 3 chunks,
the remaining 5 chunks will be stored in the host CPU
memory. For example, when 64 GB memory is needed to
simulate 32 qubits, the first 16 GB is allocated in the P100
GPU and the remaining 48 GB is in the CPU memory.
Step 3: Reactive chunk exchange: During circuit simula-
tion, a chunk exchange between the GPU and the CPU arises
when the requested state amplitudes are not locally available
on the GPU. In QISKit-Aer, the chunk exchange between
the CPU and the GPU is triggered on-demand. That is, when
both the chunks on the CPU and the GPU are involved in one
state update, the corresponding CPU chunks are transferred
to GPU for updating. After the operation, the updated chunks
are transferred back to the CPU. Note that, the amount of
data exchange in the following scenarios depends on the
qubits in the specific gate simulation.

• Case 1: All the indices of the qubits involved in the cur-
rent gate are smaller than the chunk size:. For example,
a gate on qubit 0 requires amplitudes a×××××××0 and
a×××××××1 (see Equation 8). In this case, each chunk
can be updated independently without requiring extra data
movement.

• Case 2: Some indices of qubits involved in the current
gate are outside the chunk boundary: In this scenario,
let us assume there is a gate that operates on q6, thereby
the required pairs of amplitudes are a×0×××××× and
a×1××××××. However, as depicted in Figure 1, none of
the chunks contains a pair of required amplitudes, i.e., the
computation for updating amplitudes involves more than
one chunk. Specifically, to update the pairs of amplitudes,

0000000~0001111

0010000~0011111

0100000~0101111

0110000~0111111

1000000~1001111

1010000~1011111

1110000~1111111

1100000~1101111

0000000~0001111

0010000~0011111

0100000~0101111

0110000~0111111

1000000~1001111

1010000~1011111

1110000~1111111

1100000~1101111

CPU memory

GPU memory

!"#$%!
!"#$%"

…

!"#$%#

!"#$%!
!"#$%"
!"#$%$

!"#$%%
!"#$%&
!"#$%'
!"#$%(
!"#$%#

Figure 1: Example of baseline execution where the state
vector is statically partitioned and allocated on CPU and
GPU.

we need (chunk0, chunk2), (chunk1, chunk3), . . . , and
(chunk5, chunk7). However, (chunk1, chunk3) involves
one chunk on the GPU and one chunk on the CPU. In
this scenario, data exchange is required. In the baseline
QISKit-Aer simulation, the requested chunks are always
copied from CPU to GPU. That is, in the example above,
the CPU copies chunk3 to GPU. After the chunk3 is
updated together with chunk1, it is copied back to the
CPU memory.

Note that as the GPU memory capacity is less compared
to the CPU host memory, a large number of chunks are
statically allocated on CPU memory when the number of
qubits is large. For instance, on the P100 GPU with 16 GB
memory, we observe from experiments that when simulating
a circuit that has 34 qubits, the state vector is divided into
8192 chunks, 496 chunks are allocated on GPU, while the
remaining 7696 chunks are all on CPU. Therefore, one
can expect that most of the time, the CPU does the state
amplitude update without taking advantage of the GPU
acceleration.

C. Characterization and Observations
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Figure 2: Baseline execution time breakdown.

In this section, we quantify the simulation performance
of the baseline QISKit-Aer. We first study the scalability
when the number of qubits increases. We observe that, if
there are less than 30 qubits in the circuit, the baseline GPU
is much faster than compared CPU-based simulation (e.g.
9.67× speedup for 29-qubit circuits on average), since the
entire state vector fits in the P100 GPU memory and there
is no need for data exchange and synchronization. However,
the baseline GPU performance significantly drops when the



0
0.5

1
1.5

2

hch
ain

_3
4

rqc_
32

qao
a_

33
gs_

33
hlf_

33
qft_

33

iqp
_3

3
qf_3

3
bv_

33 av
gN

or
m

al
iz

ed
 T

im
e

Figure 3: Normalized execution time of naive approach.
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Figure 4: Execution time breakdown of naive approach.

number of qubits is larger than 30. GPU becomes worse than
CPU when the number of qubits reaches 32. For example,
we observe a factor of 1.8× slowdown for qft_33 2.

To investigate the reason for this slowdown, we show
the breakdown of the execution time in Figure 2. One can
observe that, on average, 88.89% of the execution is spent
on the CPU, indicating that the GPUs are not properly used
in the baseline execution for large number qubit circuits.
Moreover, the overheads required for amplitudes exchange
and synchronization occupies 10.29% of the average execu-
tion time, and the computation time of GPU only occupies
0.82% of total time on average. In other words, most of the
computation is performed by the CPU and the GPU is idle
due to the static state chunk allocation in the baseline QCS
execution. In Figure 6, I depicts the execution timeline of
the baseline.
D. Will a Naive Optimization Work?

To improve the GPU utilization, an intuitive optimization
is to dynamically allocate the chunks and transfer the chunks
to GPU for updates. We implemented the dynamic state
vector chunk allocation in QISKit-Aer baseline. Figure 3
depicts the execution time of the naive optimization nor-
malized to the baseline execution. Surprisingly, none of the
quantum circuits we studied show improvements when using
dynamic allocation. To further investigate the reason, we
break down the execution time and show the results in
Figure 4. As one can observe, while CPU execution time
significantly reduces, the data movement dominates, indicat-
ing that the GPU is severely underutilized waiting for data.
Figure 6 II shows the naive execution timeline. Therefore,
naive dynamic allocation alone does not deliver good QCS
performance. More sophisticated end-to-end optimizations
are required to systematically improve the QCS performance
and scalability.

2In this paper, we use n in the circuit name (e.g., circ_n) to represent
a circuit with n qubits.
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IV. Q-GPU

In this paper, we propose Q-GPU, a framework that
features several end-to-end optimizations. Figure 5 depicts
the high-level overview of Q-GPU. ( 1 ) Q-GPU performs
proactive state amplitude transfer to fully utilize the bi-
directional data transfer bandwidth between CPU and GPU
(Section IV-A). ( 2 ) Before copying state amplitudes to
GPU, Q-GPU performs dynamic redundancy elimination
that prunes zero state amplitudes to avoid unnecessary data
movements (Section IV-B). ( 3 ) Q-GPU features a compiler-
assisted, dependency-aware quantum gate reordering to en-
large the potential of pruning, i.e., the number of zero
amplitudes (Section IV-C). ( 4 ) Q-GPU implements a GPU-
supported, lossless amplitude compression to further reduce
the data transfer caused by non-zero state amplitudes with
minimal runtime overheads (Section IV-D).

A. Proactive State Amplitudes Transfer

In the naive execution, one reason behind the poor GPU
utilization is the sequential state amplitude transfer between
CPU and GPU. Specifically, when the GPU finishes updating
all local chunks, those chunks are first copied back to CPU
memory before the CPU can transfer the next batch of un-
updated chunks to the GPU. This restriction is reasonable
in the scenarios when particular chunks are involved in
consecutive updates, since the chunks being copied from the
GPU’s memory cannot be overwritten during the copying. In
other words, data movements are synchronized to avoid data
conflicts. However, if the subsequent chunks from the CPU
are not copied to the same memory locations on the GPU
where current chunks are stored, such data conflict does not
exist. As a result, one can transfer the chunks simultaneously
from the CPU to the GPU and from the GPU to the CPU.

In our work, Q-GPU leverages CUDA streams to enable
concurrent and bi-directional chunk copy to fully utilize
the available bandwidth between the CPU and GPU. To
avoid potential data conflict, Q-GPU implements two CUDA
streams and partitions the GPU memory into two halves.
One stream is responsible for the first half partition that
acts as a buffer holding the chunks the GPU is currently
updating. The other stream is responsible for the second
half partition that acts as a buffer for “prefetching” the next



chunks for the GPU to update. The two memory partitions
work as “circular buffers” to feed the GPU with the required
chunks. These two streams can potentially overlap and
execute concurrently.

Figure 6 illustrates the timeline of the baseline and each
of our optimizations. The proposed proactive state amplitude
transfer ( III ) achieves A cycles savings compared to the
baseline ( I ).
B. Pruning Zero State Amplitudes

While overlapping improves the bandwidth utilization, the
total amount of amplitudes that are transferred remains
unchanged. To reduce the data movement, we observe that
there exist a considerable amount of zero state amplitudes
that do not need to be updated during simulation. Thus, those
zero state amplitudes can be pruned before transferring the
chunks.
Source of zero amplitudes: Let us assume there are n
qubits, the initial states are usually set as |0⟩⊗n in the
general QCS, indicating that all qubits have zero probability
of being measured as |1⟩. Hence, all state amplitudes are
zeros, except for a0102...0n which is 1. As the state of a
particular qubit is unchanged until an operation is being
applied on it, its state remains |0⟩ until that operation
happens. For instance, if a particular qubit qk is |0⟩, all
the state amplitudes a×···×1k×···× are zeros since qk has
zero probability to be measured as |1⟩. In general, if m of
n-qubits are not involved, amplitudes a×0k1

×0k2
···×0km××

are possible to be non-zero values, whereas the remaining
amplitudes are guaranteed to be zero values, i.e., 2n−2n−m

amplitudes are zero values. Therefore, even if only one qubit
is not involved, then half of the state amplitudes are zeros.
Pruning potential: To investigate the potential of pruning,
Table II lists the number of total operations and the number
of operations before all qubits are involved. For circuits like
iqp, we can expect a significant reduction of data movement
after pruning since many qubits are not involved until the
very end of execution. However, for qft and qf, all qubits
are involved at the beginning of execution, diminishing the
potential benefits of pruning. We also use hchain_10 as an
example and plot the distribution of state amplitudes after
each operation (i.e., quantum gate) being applied. Figure
7 shows the state amplitudes distribution after 0, 30, 60
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Overlap

Pruning

Reorder

Compression

Figure 6: Timeline showing the benefits of each optimization
in Q-GPU.

Table II: The number of total operations and the number of
operations before all qubits are involved for all circuits with
34 qubits.

Circuit Total number
of operations

Number of operations before
all qubit involvement Percentage

hchain 1786 272 15.23%
rqc 124 54 43.55%
qaoa 754 19 2.51%
gs 37 16 43.24%
hlf 48 16 33.33%
qft 184 13 7.07%
iqp 146 132 90.41%
qf 222 16 7.21%
bv 134 34 25.37%

and 90 operations. One can observe that a large portion of
state amplitudes are zeros at the beginning of the simulation
(Figure 7a). During simulation, the amplitudes are gradually
updated to non-zero values since more qubits are involved
(Figures 7b to 7d).

In general, let us assume we have an operation involving
m states, if all of the states are zero, these m states remain
zeros after applying any operation. As a result, we do not
need to transfer the zero state amplitudes to the GPU as
their values will not change. Therefore, one can reduce the
data movement between CPU and GPU by pruning the zero
state amplitudes.
Pruning Mechanism: To this end, Q-GPU uses bits in
a binary string as flags to indicate whether a qubit has
been involved after a set of gate operations (denoted as
involvement in Algorithm 1). Initially, all the bits in
involvement are set to 0. When qk is involved, the kth bit
in involvement is set to 1. Recall that the state vector is
partitioned into chunks, the index of a chunk, i.e., iChunk,
determines whether a chunk will be transferred or not.
To compare iChunk with flag bits in involvement, we
define iChunk′ as the left-shifted iChunk to align with
involvements. When iChunk′ is larger than involvement,
it indicates that at least one bit of iChunk′ is 1 and
the corresponding flag bit in involvement is 0. In this
situation, the corresponding qubit (i.e., indexed by this flag
bit) has not been involved by any operation. As such, we
skip the remaining chunks and stop the iteration (line 5).
On the other hand, if iChunk′ is smaller than or equal to
involvement, the redundancy within a chunk is determined
by iChunk′ & involvement (line 7). For a qubit whose
corresponding bit in iChunk′ is 1, if it has already been
involved by previous operations, its corresponding bit in
involvement is also 1. Therefore, for all the qubits that
is 1 in iChunk′, if all of them have already been involved
by previous operations, iChunk′ & involvement results in
iChunk′ itself. Otherwise, all the state amplitudes within
this chunk are zeros, and we can prune this chunk. Moreover,
the chunkSize here is dynamically determined rather than
a statically fixed value, which enhances the benefit of the
strategy discussed above. Specifically, we select chunkSize
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Figure 7: State amplitudes distribution of hchain 10, after 0, 30, 60 and 90 operations from (a) to (d). Blue and orange
lines denote real and imaginary parts of an amplitude respectively.

Algorithm 1: Pruning zero state amplitudes.
Variable list: N Total chunks number in CPU,

involvement Flag indicating which qubits are involved
1 /* Determine chunkSize by locating the least

non-zero bit of involvement */
2 chunkSize, N = getChunkSize(involvement)
3 for iChunk ← 0 to N − 1 do
4 iChunk′ = iChunk << chunkSize
5 if iChunk′ > involvement then
6 break

7 if iChunk′&involvement ̸= iChunk′ then
8 continue

9 /* Amplitudes update */
10 . . .

11 updateInvolvement(involvement)

by finding the least non-zero bit of involvement. This is
useful, especially at the beginning of the simulation where
many state amplitudes are zeros. For instance, assuming
we have an 8-qubit circuit and the involvement flag is
00000011 at the early execution stage, the chunkSize is
dynamically set to 2, which has fewer zeros within a chunk
compared to a larger chunk. The involvement flag bits are
updated according to the qubits involved in each operation
(line 11). In Figure 6, the proposed pruning mechanism ( IV )
further saves ( B ) cycles over III .

C. Reordering to Delay Qubit Involvement
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Figure 8: A walk-through example to illustrate the reordering
benefits using gs 5. The red numbers denote the operation
orders before and after reordering.

In order to enlarge the potential of pruning such that more
state amplitudes are zeros during simulation, we propose

compiler-assisted, dependency-aware quantum operation re-
ordering to delay the involvement of qubits. Specifically,
when applying a gate, we choose the one that incurs the
minimum number of additional qubits to be involved with
those qubits that have been already involved by previous
operations. For example, Figure 8a shows the gs_5 circuit
in the original execution order. The first five gates are H
gates, where each gate applies to an individual qubit. As a
result, once these gates have been applied, all the five qubits
are involved. The next operation is a CNOT gate applied to
qubits q0 and q1 (CNOT6). All the state amplitudes are
likely to be non-zero because the qubits are involved by
the H gates. Therefore, applying this CNOT gate requires
updating all the non-zero amplitudes in the state vector,
leading to moving and traversing the entire state vector on
the GPU. However, the CNOT6 can be executed before
some of the H gates without violating the circuit semantics.
This gate reordering allows more zero state amplitudes
(fewer data movements) when simulating the CNOT6 gate.
It is also important to emphasize that any reordering must
obey the gate dependencies. For instance, CNOT6 and
CNOT7 cannot be reordered due to the dependency on q0.

To this end, we propose a compiler-assisted optimization
to reorder the gate sequence with the goal of delaying
the qubit involvement. Specifically, gates that are applied
on different qubits in a quantum circuit can be executed
independently in any order and the execution sequences of
these independent gates does not affect the final simulation
result [20], [29], [33]. This provides us the opportunity to
reorder the independent gates. We use a directed acyclic
graph (DAG) to represent the gate dependency in a circuit.
Based on the DAG, we reorder the independent gates such
that the simulation sequence involves the minimum number
of new qubits when simulating each gate. Specifically, we
investigate two heuristic strategies: 1) greedy reordering, and
2) forward-looking reordering.
Greedy reordering: greedy reordering traverses the DAG
in topological order and greedily selects the gate (i.e., node
in the DAG) that introduces the minimum number of new
qubits to the list of updated qubits. The details of this
method are illustrated in Algorithm 2. First, gates without
predecessors in the DAG can be executed at the first steps



Algorithm 2: Quantum operation reorder.
Input : DAG A DAG representing circuit dependencies.
Output: gatesList List of gates after reordering,

1 gatesList = [ ]
2 exeList = [ ]
3 /* First we build DAG and push gates without

predecessors to an execution list */
4 for g in DAG do
5 if g.numPredecessors() == 0 then
6 exeList.append(g)

7 /* Then we traverse DAG in topological order and
greedily decides the execution order of the gates

*/
8 while exeList ̸= ∅ do
9 nextGate = NULL

10 minCost = 0
11 for g in exeList do
12 cost = g.getCost()
13 if cost < minCost then
14 minCost = cost
15 nextGate = g

16 exeList.erase(nextGate)
17 gatesList.append(nextGate)
18 for g in nextGate.descendants() do
19 g.numPredecessors() = g.numPredecessors()− 1
20 if g.numPredecessors() == 0 then
21 exeList.append(g)

and are put into exeList. Second, we traverse the gates
in exeList and find the one that introduces the minimum
number of newly involved qubits (lines 8 to 15). Then, we
remove this gate from exeList and append it to the list of
re-ordered gates. Third, we traverse the descendants of this
gate and if a descendant does not have any predecessors
other than this current gate, it will be added to exeList (lines
18 to 21). The second and the third steps are repeated until
exeList is empty. In the rest of this section, we use Figure
8a as the example to illustrate how we perform reordering.
At first, the exeList is [g1, g2, g3, g4, g5]. Since each of
these five gates involves one new qubit, we randomly select
one gate among them to start simulation. In this example,
g1 is selected as the starting gate. After traversing all its
descendants, no new gates can be added into exeList. Next,
the exeList becomes [g2, g3, g4, g5]. In the next three steps,
we randomly select g3, g5 and g2 since no new gates can be
executed and all gates in exeList have equal priority. Then
the exeList becomes [g4, g6]. At this time, involvedQubits
is [q0, q1, q2, q4]. Therefore, g4 involves one new qubit (q3),
whereas g6 will not introduce any new qubits since it acts
on q0 and q1 that are already in the involved list. Therefore,
we will greedily select g6 to execute since it involves the
least new qubits. One can follow these reordering steps to
reach the new ordering shown in Figure 8b. As a result, the
number of involved qubits at each step is 1 → 2 → 3 → 4 →
4 → 4 → 5 → 5 → 5. Since the baseline is 1 → 2 → 3 →
4 → 5 → 5 → 5 → 5 → 5, the final involvement is delayed
by two steps. However, a better solution for reordering is
to select g2 and g6 in the second and the third step, since
applying these two gates only adds one qubit to exeList,
while applying g3 and g5 adds two. Thus greedy reordering

Algorithm 3: Cost calculation in forward-looking
reordering.

Input : g Gates from exeList,
exeList List of gates that are executable,

involvedQubits Set of involved qubits.
Output: cost Potential involved qubits after executing g.

1 costCurrent = 0, costLookAhead = 0
2 /* First we compute additional qubits that will be

acted on by executing current gate */
3 for q in g.qubits() do
4 if q not in involvedQubits then
5 costCurrent = costCurrent + 1
6 involvedQubits.insert(q)

7 exeList.erase(g)
8 for g′ in g.descendants() do
9 if g′.numPredecessors() == 1 then

10 exeList.push(g′)

11 /* Then we traverse current exeList and compute the
cost of selecting a gate that involve least
additional qubits */

12 for g′′ in exeList do
13 curCostLookAhead = 0
14 for q′ in g′′.qubits() do
15 if q′ not in involvedQubits then
16 curCostLookAhead = curCostLookAhead + 1

17 if curCostLookAhead < costLookAhead then
18 costLookAhead = curCostLookAhead

19 cost = costCurrent + costLookAhead
20 return cost

may miss the optimal choice.
Forward-looking reordering: To address the deficiency in
greedy-reordering, we propose Forward-looking reordering
that looks ahead of all the equal-priority gate candidates
before making a decision. We implemented a cost counter
to determine the priority of the gates in exeList. In greedy
reordering, the cost is simply computed by counting new
involved qubits (lines 3-6 in Algorithm 3). In contrast, the
computation of cost in forward-looking reordering is more
sophisticated as it consists of two components: costCurrent
and costLookAhead (line 1). The costCurrent is the same
with the cost used in greedy reordering. Again, we use the
example in Figure 8a to illustrate Algorithm 3. Initially,
the exeList is also [g1, g2, g3, g4, g5]. We take g1 as
an example to explain the computation of costLookAhead.
First, we assume g1 has already been executed. Then,
the costCurrent is 1 and involvedQubits becomes [q0]
(lines 3-6). Since no descendants of g1 can be executed,
the exeList becomes [g2, g3, g4, g5] (lines 7-10). Then,
we traverse the exeList. For each gate in exeList, we
compute the cost of selecting this gate by counting the new
involved qubits (lines 12-18) and selecting the least cost as
costLookAhead. Now, executing any gate in exeList will
involve one new qubit, thus costLookAhead is computed
as 1 (lines 12-16). Similarly, one can find that all gates
at the first step have equal priority. For the purpose of
illustration, we assume g1 is randomly selected. Then the
exeList becomes [g2, g3, g4, g5]. Although all gates still
have equal costCurrent, we can find that g2 has the
least costLookAhead. The reason is that, when we assume
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Figure 9: Qubit involvement during simulation in three
representative circuits.

executing g2 and look ahead from g2, we find that executing
g6 introduces no new qubits. In contrast, look ahead after
executing other gates will introduce new qubits. Therefore,
g2 is selected to be executed in the next step. Following this
procedure, we get the result of forward-looking reorder as
shown in Figure 8c: the involvement at each step becomes
1 → 2 → 2 → 3 → 3 → 4 → 4 → 4 → 5. Compared
to greedy reordering, we further delay the final involvement
by two steps. Note that, exeList and involvedQubits in
Algorithm 3 are just copies of the original ones, thus their
original values are not changed.
Reorder effectiveness: To assess the performance of the
reordering algorithms discussed above, we implement them
to reorder the original operation sequences for all benchmark
circuits that have 22 qubits and plot the involvement
(Algorithm 1 in Section IV-B) after each gate has been
applied. For the purpose of illustration, we depict the re-
sults of three representative benchmark circuits in Figure
9, where the involvement is defined in section IV-B and
used in Algorithm 1. For each order, i.e., original order,
greedy-reorder, and forward-looking reorder, the “speed” of
reaching the maximum involvement indicates the pruning
potential. We observe that, forward-looking reordering re-
sults in the largest pruning potential, while greedy reordering
only works for qft_22 and even results in less pruning
potential than baseline for gs_22. Particularly, for gs_22
and qft_22, forward-looking reordering effectively delays
the involvement of qubits. Thus, we can expect the pruning
potentials of these circuits to be enlarged by forward looking
reordering. However, for qaoa_22, none of the reordering
algorithms work due to the prevalent dependencies among
the gates. Refering back to Figure 6, when reordering ( V )
is employed, we can prune more chunks, which saves
additional C cycles compared to IV .

Note that, pruning and reordering do not affect the sim-
ulation results nor introduce error to quantum circuits. This
is because a quantum state vector is partitioned into groups
and each group is updated independently in parallel (as we
discussed in Section II-A). A group of amplitudes is a 1xN
vector, and a quantum gate is an NxN matrix. Thus, the
actual computation involves multiple parallel 1xN vectors
– NxN matrix multiplications. If a 1xN vector contains all
zeros, it will stay unchanged after being multiplied with any
matrix, thus can be “pruned” safely (i.e., we leave these all-

zero 1xN vectors on CPU w/o transferring them to the GPUs
and update them). Moreover, the reordering does not affect
the simulation results since we do not violate dependencies
among gates. The greedy reordering involves light-weight
overheads and is effective in the circuits containing less
dependent gates (e.g., qft).

D. Compressing Non-zero State Amplitude

iqp_20qaoa_20

Residual value

PD
F

Figure 10: Residual distributions for qaoa 20 and iqp 20.

Compressibility: While pruning removes the zero state
amplitudes, those non-zero amplitudes still cause data move-
ment overheads especially for circuits that do not have
large pruning potentials (e.g., qaoa in Figure 9). In order
to reduce the data movement caused by non-zero state
amplitudes, we investigate the potential compressibility and
propose a GPU-supported efficient lossless data compression
in Q-GPU. Specifically, we observe that many non-zero
entries within a state vector, after each operation, have sim-
ilar amplitude values. In other words, there is a significant
“spatial” similarly among consecutive state amplitudes in
the state vector. To demonstrate the compressibility, we use
qaoa_20 and iqp_20 as examples and show the residuals
by subtracting the consecutive state amplitudes. As one
can observe from Figure 10, for qaoa_20, most of the
residuals are zero or very close to zero, indicating a potential
for residual-based compression. However, iqp will be less
compressible due to more diverse distribution.
Compression Strategy: We use the GFC algorithm [47] in
Q-GPU. We implement the GFC as GPU kernels to perform
the compression in parallel, thereby reducing the compres-
sion and decompression overheads. As shown in Figure 11,
we divide a chunk into segments and each segment is
compressed/decompressed by a single warp. Multiple warps
compress multiple segments independently and concurrently.
We empirically choose the number of segments to match
the GPU parallelism such that the GPU is properly uti-
lized. To compress/decompress a single segment, we further
partition a segment into micro-chunks. Each micro-chunk
contains 32 amplitudes to match the warp size. Each warp
iteratively computes residuals between consecutive micro-
chunks within a segment and encodes the residuals into
compressed formats. For example, threadj(0 ≤ j ≤ 31)
of a warp is responsible to subtract data doublej in current
micro-chunkk and corresponding data doublei in previous



countj-1… … …residualj-1 residualjcountj
1 bit 3 bit 0-8 byte

compressed micro-chunkk

sub
0 1 i 31 0 1 j 31

micro-chunkk-1 micro-chunkk
… … … … ……

sig
n j-1

sig
n j

Chunk Segment Compressed Segment

… …

CPU
Decompression Kernel

Compression Kernel

GPU

Figure 11: Overview of compression
in Q-GPU.

0
0.2
0.4
0.6
0.8

1
1.2

34 32 34 31 32 33 34 31 32 33 34 31 32 33 34 31 32 33 34 31 32 33 34

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Number of Qubits

hchain rqc hlf qfiqpqft bv

OverlapBaseline CompressionPruning Reorder

31 32 33 34

avg

CPU+OpenMP

qaoa gs

31 32 33 34 31 32 33 34

Figure 12: Normalized execution time for circuits with different number
of qubits (the lower the better).

micro-chunkk−1 to get the residual value. Then, it encodes
leading zeros of residual into a 4-bit prefix, where one bit is
used to record the sign and the other three bits for counting
the bytes of leading zeros. Other threads in the warp execute
the same steps on different data and communicate through
shared memory to compute the size of compressed micro-
chunks. As shown in figure 11, the compression is performed
on the GPU after updating the chunk before copying it to the
CPU. The compressed segments are transferred to the CPU
instead of the original state chunks. The CPU keeps the
compressed segments and copies the compressed segments
to the GPUs upon request. Once the chunks are copied to the
GPU, the amplitudes are decompressed, updated, and then
compressed. As can be seen from Figure 6, compression ( VI )
saves D cycles over V and introduces negligible overhead.
Later, in section V, we quantify the overheads incurred by
the compression and decompression procedures.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate Q-GPU using the nine circuits
in Table I. We implement Q-GPU by substantially extending
IBM QISKit-Aer. For all experiments, the default optimiza-
tions in QISKit-Aer are turned on in both baseline and Q-
GPU evaluation. We test six different versions of execution
for all quantum circuit benchmarks:

• Baseline: This version is the default QISKit-Aer (v0.7.0)
with state-of-the-art GPU support [3]. As illustrated in
Section III-B, state amplitudes are statically allocated on
the CPU and the GPU in this version.

• Naive: This version is the intuitive implementation dis-
cussed in Section III-D, which dynamically allocates state
amplitudes to GPU. The performance of this version is
dominated by expensive data movements.

• Overlap: This version implements the first optimization –
proactive state amplitude transfer – in Q-GPU. It is built
upon the Naive version and its details are discussed in
Section IV-A.

• Pruning: This version adds the proposed pruning mech-
anism (Section IV-B) to Overlap. By skipping the data
movement of zero state amplitudes, the amount of data
movement is reduced.

• Reorder: In this version, we implement forward-looking
reorder algorithm (Section IV-C) to enlarge the potential
for pruning. This reordering is performed by a simple
compiler pass integrated in the Q-GPU.

• Compression/Q-GPU: In this version, all optimizations
are employed with the proposed lossless compression.

A. Overall Performance

Figure 12 shows the overall performance and scalability
among the six versions for all nine quantum circuits. The
y-axis in the figure denotes the normalized execution time
to the Baseline version. From the figure, one can make the
following observations. First, Q-GPU significantly reduces
the execution time of QCS across all the circuits. Specifi-
cally, Overlap, Pruning, Reorder, and Compression/Q-GPU
bring 24.03%, 47.69%, 58.60%, and 71.89% execution time
reductions over the baseline execution for the largest number
of qubits (i.e., 34 qubits) that can run on our platform.
Second, the scalability of QCS performances is significantly
improved by, “breaking”, the memory limitation in GPUs.
The average performance reduces execution time by 71.89%
over baseline (3.55× speedup) for 34 qubits. Although we
can only simulate up to 34 qubits due to the CPU memory
limitation (384 GB) in our system (Section III-C), one
can infer from the trend that Q-GPU is scalable to large
circuit sizes. Third, Q-GPU achieves different performances
for different circuits. Specifically, for gs, qft, qaoa and
iqp, higher execution time reduction is observed, whereas
for hchain and rqc, less execution time reduction is
observed. This is because, for hchain and rqc, reordering
cannot enlarge the pruning potential due to dependent gates.
Their amplitude residuals also have disperse distribution
(similar to iqp in Figure 10). Thus, either Reorder or
Compression improves little for these two benchmarks.
Finally, for different circuits, a certain version may not
have the same improvement. For example, Overlap version
generates a similar execution time reduction in all circuits
tested. However, for Pruning, Reorder, and Compression, the
runtime reduction is different between different circuits. For
example, Pruning and Reorder improve little for qaoa and
qf because these two circuits do not have much potential
of pruning the zero amplitudes. That is, their qubits get
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involved quickly with dependent operations. However, qaoa
achieves significant benefits by compression as there is great
potential of compressibility. (discussed in Section IV-D).
We also compared Q-GPU with QISKit-Aer CPU-OpenMP
in Figure 12. For 34-qubit circuits, the proposed Q-GPU
achieves 32.68% average execution time reduction (1.49×
speedup) over the CPU-OpenMP. Q-GPU has less speedup
for hchain and rqc and cannot beat CPU-OpenMP version.
As explained earlier in this paragraph, this is because the
pruning potential and the compressibility are low in both
circuits where Q-GPU is less effective.

To further understand the execution time reduction, Fig-
ure 13 plots, for each version, the data transfer time. In this
figure, the y-axis represents the data transfer time normalized
to the Naive version. Clearly, one can observe a step-wise
data transfer time reduction in the versions of Q-GPU.
First, Overlap uniformly reduces the data transfer time by
an average of 44.56%. Note that, the savings generated
in Overlap are independent of circuit types. For Pruning
and Reorder, the reduction of data transfer time varies in
different circuits. This is because the number of zero state
amplitudes and the potential of pruning heavily relies on
the circuit type. For example, qaoa, qft, and qf get all
qubits involved at early stage of simulation. Hence, pruning
is less effective for these circuits compared to others. Also,
as discussed in Section IV-C, Reorder has little effect on
hchain, rqc, qaoa, and qf due to dependent operations
in these circuits. Therefore, Reorder delivers similar data
transfer time reduction with Pruning for these circuits.
However, for those circuits with less dependent operations,
Reorder significantly reduces their data transfer time by
enlarging the pruning potential. For circuits like qaoa,
gs, qft, and qf, Compression effectively reduces the data
movement by leveraging the spatial similarity discussed in
Section IV-D.

We also quantify the computation time of compression
and decompression in Figure 14. Overall, the compression
and decompression overhead is 3.31% and 2.84% of the

execution time. Potentially one may further optimize the
compression and decompression by overlapping them on
GPU, but we found the overhead is negligible compared to
the significant reduction in execution time that we achieved.
We also want to emphasize that the execution times reported
in Figure 12 have all the sources of overhead included.

B. Roofline Analysis

We conduct a GPU roofline analysis to show the com-
pute intensity and memory intensity of QCS on NVIDIA
Tesla V100 GPU with 16 GB memory. We use NVIDIA
Nsight Compute [46] to collect the metrics and calculate
the arithmetic intensity and FLOPS of GPU for the QCS
applications. We use qft and iqp as examples and the
results are shown in Figure 15. As one can observe from the
figure, QCS is memory-bound since all points are located
under the line. When the number of qubits is small (less
than or equal to 29 qubits) and the whole state vector can
fit into GPU memory, the execution reaches the bound of
FLOPS. However, when the simulation significantly exceeds
the GPU memory capacity (larger than or equal to 31 qubits
, the baseline suffers from very low FLOPS. In contrast,
the naive approach improves the FLOPS, but the arithmetic
intensity is also reduced. The proposed Q-GPU has much
higher FLOPS than the baseline and naive approach.
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Figure 15: Roofline analysis of Q-GPU using qft and iqp.

C. Comparison with Other Simulators

We next compare Q-GPU with Google Qsim-Cirq v0.8.0
plus Cirq v0.9.2 [54] and Microsoft QDK v0.15 [41]. Note
that both Qsim-Cirq and QDK have OpenMP enabled and
we observe that they use all available CPU threads during
execution. To perform the simulation on Qsim-Cirq, we need
to first transform our circuit benchmarks into OpenQASM
programs [14], and then import these programs to Qsim-Cirq
for simulation. Unfortunately, not all the transformed circuits
can run on Qsim-Cirq due to the lack of support for some
gates (e.g., the “cp” gate cannot be recognized by Qsim-
Cirq) used in the benchmarks. As a result, we test gs and
hlf on Qsim-Cirq. Similarly, to run those benchmarks on
QDK, we have to further convert the OpenQASM programs
to “qsharp”, i.e., the quantum language used in Microsoft,
and the conversion only succeeded for qft, iqp, hlf, and
gs. The normalized execution time results are shown in
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Figure 16: Comparisons of Q-GPU with Google Qsim-Cirq
v0.8.0 and Microsoft QDK v0.15.
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Figure 17: Normalized execution time on NVIDIA Tesla
A100 and V100.

Figure 16. On average, Q-GPU achieves 50.50% execution
time reduction (2.02× speedup) over Qsimcirq, and 90.76%
execution time reduction (10.82× speedup) over QDK.

D. Performance on NVIDIA V100 and A100
We want to emphasize that Q-GPU is not bound to any

particular GPU architecture. To investigate how Q-GPU
performs on different GPU architectures, we run Q-GPU
on i) a server with an 32-GB NVIDIA V100 GPU (the
corresponding CPU is a 8-core Intel Xeon 6133 CPU and
the host memory is 80 GB), and ii) a server with an 40-GB
NVIDIA A100 GPU (the corresponding CPU is a 12-core
virtual CPU and the host memory is 85 GB). As shown in
Figure 17 Q-GPU achieves on average 27.05% and 53.24%
execution time reductions on A100 and V100, respectively.
Since A100 has large device memory and the host memory
is limited, Baseline A100 has higher GPU utilization and
performs better in some circuit benchmarks (hchain_34
and qaoa_32 exceed server memory and fail to execute).

E. Multi-GPU Performance
We next evaluate Q-GPU in multi-GPU systems. We use

the Qiskit-Aer multi-GPU support as our baseline [18]. As
shown in Figure 18, Q-GPU employs multi-GPU as follows:
consider a 7-qubit circuit with an operation acting on q5.
We first assign all state amplitudes to CPU memory. Then
we partition state chunks on the CPU into 4 groups and
assign them to two GPUs, i.e., G0 and G1. In the example,
group0 and group2 are assigned to G0 and group1 and
group3 are assigned to G1. In other words, Q-GPU assigns
amplitudes to multiple GPUs in a round-robin fashion using
groups. When the GPUs finish the computation, the chunks
assigned to each GPU are copied back to the CPU host
memory. We evaluate Q-GPU using two multi-GPU servers.
Server-1 has a 32-core CPU with 208 GB main memory
and four NVIDIA Tesla P4 GPUs (8 GB memory per GPU)
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Figure 18: Multi-GPU execution in Q-GPU.
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Figure 19: Normalized execution time on multi-GPU plat-
forms.

connected through PCIe. Server-2 has the same CPU and
four NVIDIA Tesla V100 GPUs (16 GB memory per GPU)
connected through NVLink. Figure 19 shows the execution
time normalized to baseline Qiskit multi-GPU execution.
Note that, the circuits running on V100 have larger number
of qubits since the V100 memory capacity is larger. As
one can observe, Q-GPU achieves 66.38% (2.97× speedup)
and 66.46% (2.98× speedup) execution time reductions on
server-1 and server-2, respectively. This is because, the
majority of the data movement is between CPU and GPUs
in the multi-GPU quantum simulation. The cross GPU data
movement is limited and does not dominate the execution
time.

F. Deep Circuit

We next study how Q-GPU performs in deep circuits.
Note that Q-GPU has limited improvements if the circuits
have many dependent gates. However, for deep circuits
with independent gates, Q-GPU is able to yield appealing
improvements. To this end, we test Q-GPU using Google
deep circuit (denoted as grqc) which is generated under
rules defined in [9] and two random deep circuits (denoted
as rqc 31 and rqc 32). Table III shows the number of
operations and the performances of the three deep circuits.
As one can observe, pruning and reordering in Q-GPU can
achieve 41.47% execution time reduction on Google deep
circuit, and on average 17.69% execution time reduction on
two random deep circuits. This indicates the effectiveness
of Q-GPU in deep circuits.
Table III: Effectiveness of pruning and reordering for deep
random circuits.

Circuit Total number
of operations Overlap (s) Reorder (s) Execution time

reduction (%)

grqc_32 7241 42875.22 25095.02 41.47%
rqc_31 598 1646.08 1349.94 17.99%
rqc_32 623 3396.02 2805.54 17.39%



VI. RELATED WORKS

To the best of our knowledge, Q-GPU is the first work
that systematically optimizes quantum circuit simulation on
GPUs.

Prior works have focused on QCS optimizations on dif-
ferent platforms, from readily available devices to cloud
environments [20], [24], [26], [48], [49], [52], [55], [57].
Thomas et al. [24] simulated 45-qubits circuit using 8,192
nodes. They optimized single node performance by using
automatic code generation and optimization of compute
kernels. Edwin et al. [48] claimed to simulate more than
49 qubits by partitioning quantum circuits to “subcircuits”
and delay their entanglements. In [55], the authors proposed
lossy data compression to reduce the memory requirement
of simulating large-scale quantum circuits. Aneeqa et al.
[20] focused on fully exploiting single CPU performance
for simulating a large number of qubits. The developed
algorithm aims to reorder circuits such that more gates can
be clustered to reduce the number of gates. Compared with
prior works, Q-GPU is built upon several interrelated system
optimizations to fully take advantage of GPUs and mitigate
data movement overheads. While existing works [20], [29]
leverage the commutation of gates for clustering of gates, the
reordering of Q-GPU is another independent stage that has
a completely different purpose. It greedily selects gates that
involve the least number of qubits, so as to enlarge pruning
potential. In contrast, the reordering algorithms in [20], [29]
selects gates that involve many qubits that diminish the
pruning potential. Additionally, rather than using lossy data
compression [55] to reduce memory consumption, Q-GPU
provides a hybrid approach with pruning and compression to
address zero and non-zero amplitudes separately. As such,
it significantly reduces amplitudes exchange without losing
fidelity, making Q-GPU a more general simulator that can
support any quantum application.

There are also several works that utilize GPUs to acceler-
ate QCS [4], [6], [18], [22], [32], [35], [56]. Most of these
works have limited capability in simulating large quantum
circuits due to the limited memory capacity of GPUs. Ang
et al. [32] proposed a multi-GPU centric QCS framework
that tracks the density matrix. However, their framework is
still limited by the aggregated memory capacity of multi-
GPUs. For a single-node, they can only simulate up to
14 qubits on an NVIDIA V100 GPU. Doi et al. [18]
proposed to enable simulation using a GPU even when the
required memory exceeds the GPU memory capacity. In
summary, compared to prior works, Q-GPU breaks the GPU
memory capacity limitation, i.e., it is able to simulate 34
qubits which require 256 GB memory on a 16 GB memory
GPU, and fully takes advantage of GPU parallelization. The
fundamental design innovation behind this is to dynamically
and proactively transfer the state amplitudes through end-to-
end optimizations to minimize the data movement overheads
caused by state amplitudes transfer.

VII. CONCLUDING REMARKS

In this paper, we propose Q-GPU, a framework tailored
with GPU optimizations to effectively improve the quantum
circuit simulation performance for quantum circuits with a
large number of qubits. The Q-GPU breaks the memory
limitation of GPUs and delivers scalable simulation per-
formance based on the proposed end-to-end system opti-
mizations. Experimental results across nine representative
quantum circuits indicate that Q-GPU achieves on average
71.89% execution time reduction (3.55× speedup) over the
state-of-the-art GPU-based QCS on a single GPU. It also
outperforms the most recent OpenMP CPU implementation
and other publicly available quantum simulators.
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A. J. Millis et al., “Ground-state properties of the hydrogen
chain: dimerization, insulator-to-metal transition, and mag-
netic phases,” Physical Review X, vol. 10, no. 3, p. 031058,
2020.

[44] M. A. Nielsen and I. Chuang, “Quantum computation and
quantum information,” 2002.

[45] NVIDIA. (2020) Profiler user’s guide. [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/

[46] NVIDIA. (2021) Nsight compute. [Online]. Available: https:
//docs.nvidia.com/nsight-compute/NsightCompute/index.html

[47] M. A. O’Neil and M. Burtscher, “Floating-point data com-
pression at 75 gb/s on a gpu,” in Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics Pro-
cessing Units, 2011, pp. 1–7.

[48] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh,
T. Magerlein, E. Solomonik, and R. Wisnieff, “Breaking the
49-qubit barrier in the simulation of quantum circuits,” arXiv
preprint arXiv:1710.05867, vol. 15, 2017.

[49] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh,
and R. Wisnieff, “Leveraging secondary storage to sim-
ulate deep 54-qubit sycamore circuits,” arXiv preprint
arXiv:1910.09534, 2019.

[50] Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, and
K. Kim, “Quantum implementation of the unitary coupled
cluster for simulating molecular electronic structure,” Phys.
Rev. A, vol. 95, p. 020501, Feb. 2017. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.95.020501

[51] P. W. Shor, “Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer,” SIAM
review, vol. 41, no. 2, pp. 303–332, 1999.

[52] M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik, “qhip-
ster: The quantum high performance software testing envi-
ronment,” arXiv preprint arXiv:1601.07195, 2016.

[53] N. H. Stair, R. Huang, and F. A. Evangelista, “A
Multireference Quantum Krylov Algorithm for Strongly
Correlated Electrons,” Journal of Chemical Theory and
Computation, vol. 16, no. 4, pp. 2236–2245, Apr. 2020.
[Online]. Available: https://pubs.acs.org/doi/10.1021/acs.jctc.
9b01125

[54] Q. A. team and collaborators, “qsim,” Sep. 2020. [Online].
Available: https://doi.org/10.5281/zenodo.4023103

[55] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel,
Y. Alexeev, and F. T. Chong, “Full-state quantum circuit
simulation by using data compression,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2019, pp. 1–24.

[56] P. Zhang, J. Yuan, and X. Lu, “Quantum computer simulation
on multi-gpu incorporating data locality,” in International
Conference on Algorithms and Architectures for Parallel
Processing. Springer, 2015, pp. 241–256.

[57] A. Zulehner and R. Wille, “Advanced simulation of quantum
computations,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 38, no. 5, pp.
848–859, 2018.

https://github.com/microsoft/qdk-python
https://github.com/microsoft/qdk-python
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://link.aps.org/doi/10.1103/PhysRevA.95.020501
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01125
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01125
https://doi.org/10.5281/zenodo.4023103

	Introduction
	Background
	Quantum Basics
	Quantum Circuit Simulation (QCS)

	Characterization of QCS
	Quantum Circuit Benchmarks
	Baseline QCS
	Characterization and Observations
	Will a Naive Optimization Work?

	Q-GPU
	Proactive State Amplitudes Transfer
	Pruning Zero State Amplitudes
	Reordering to Delay Qubit Involvement
	Compressing Non-zero State Amplitude

	Experimental Evaluation
	Overall Performance
	Roofline Analysis
	Comparison with Other Simulators
	Performance on NVIDIA V100 and A100
	Multi-GPU Performance
	Deep Circuit

	Related Works
	Concluding Remarks
	References

