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Abstract—We propose and experimentally demonstrate a
method of optical signal-to-noise ratio (OSNR) monitoring and
modulation format identification (MFI) using a binarized con-
volutional neural network (B-CNN) in coherent receiver. The
proposed technique automatically extracts OSNR and modulation
format dependent features from the signals’ ring constellation
maps. A group of modulation schemes including nine quadrature
amplitude modulation (QAM) formats are selected as trans-
mission signals. The experimental results show that the MFI
accuracy can reach 100% and OSNR monitoring accuracy can
reach higher than 97.71% for the nine M-QAM modulation
formats. Compared with float valued convolutional neural net-
work (F-CNN) and multi-layer perceptron (MLP), B-CNN can
reach the same performance in MFI. For OSNR monitoring, the
performance of B-CNN is similar to MLP and slightly worse
than F-CNN. Moreover, the memory consumption and execution
time of B-CNN is much lower than F-CNN and MLP. Therefore,
B-CNN is power and time efficient with little performance loss
compared with F-CNN and MLP. It is attractive for cost-effective
multi-parameter estimation in next-generation optical networks.

Index Terms—Modulation format identification (MFI), OSNR
monitoring, binarized neural networks (BNNs), optical fiber
communications.

I. INTRODUCTION

W ITH the increasing of the demand for simultaneously
supporting various data services, optical network is

evolving from current fixed architecture to future flexible and
elastic one [1]–[5]. Since different services and users require
specific quality of service (QoS), the network environment
becomes heterogeneous and requires complex management
by human administrators and technicians. To realize flexible
network management and reduce human intervention, it is
desirable to develop a cognitive optical network (CON) [6]–
[9]. The aim of CON is to introduce intelligence into the
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control plane that allows for autonomous end-to-end per-
formance optimization and minimization of required human
intervention. A CON is also capable of coordinating trans-
mitters and receivers for real-time dynamic adjustment of
the modulation format, line rate, spectrum allocation and
other parameters. Managing the transceivers in this way could
help to realize intelligent channel management, bandwidth
allocation and other link functions at the network nodes,
thereby improving service quality and transmission quality.
In order to reduce operating costs, ensure optimum resources
utilization and guarantee adequate operation and management
of CON, it is essential to continuously monitor various net-
work performance parameters, which is referred to as optical
performance monitoring (OPM) [10]–[13]. Since most of the
linear impairments can be fully compensated, transmission
performance is largely determined by the optical signal-to-
noise-ratio (OSNR) and hence OSNR estimation is especially
vital for coherent links. Moreover, the OSNR monitoring
technique must be appropriate for the incoming signal type,
and the carrier recovery module used in the receiver must
be suitable for the received modulation format. Therefore,
modulation format identification (MFI) is also indispensable
for digital receivers in CON.

Recently, machine learning techniques, especially deep
neural networks (DNNs), have achieved significant progress
in various areas. Many researches have employed DNN in
optical communication system to solve various problems
[14]–[25]. Traditional OPM methods can only implement
one of MFI [26]–[29] and OSNR monitoring [30]–[33] and
require substantial prior expertise. On the contrary, DNN-
assisted methods [18]–[25] can simultaneously perform MFI
and OSNR monitoring from raw data. The capacity of DNN
to monitor multiple parameters simultaneously is essential for
OPM, since a CON must depend on real-time information
about various parameters from physical layer to make future
prediction and decision. Previous DNN-assisted OPM methods
widely explored different architectures of DNNs, including
the architecture consisted of multiple networks and each was
responsible for a different task [18], [21], and one single
network using multi-task learning framework [20], [22], [23],
[25]. In addition, different features and network types are
also investigated. Amplitude histograms (AHs) [18], [22],
[23], [25], constellation diagrams [19], [21], and asynchronous
delay-tap plots (ADTPs) [20], [24] were chosen as input fea-
tures to fully-connected DNN, also called multi-layer percep-
tron (MLP) [18], [22], [25] and convolutional neural network
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(CNN) [19], [23], [24]. Previous schemes, either in single-task
or multi-task framework, employed float-valued DNNs, either
CNN or MLP. However, DNNs are almost exclusively trained
and run on one or many very fast and power-hungry graphic
processing units (GPUs) [34]. As a result, it is a challenge
to deploy DNN in optical communication system. To be
more specific, there are many digital signal processing (DSP)
modules in a coherent receiver, such as adaptive equalization
and carrier phase recovery that require real-time information
about current modulation format. Therefore, a flexible digital
coherent receiver will have strict latency requirement for OPM,
while the large-scale float valued operations of DNNs are time
consuming. Moreover, the memory resources are limited in
real-time DSP circuits, while DNNs usually take up a lot
of memory. All these factors make it unpractical to integrate
DNN into coherent receivers. Although we could use external
devices to perform OPM, this method will increase the total
cost a lot and the communication latency between receivers
and OPM devices is also unacceptable. In conclusion, it
is significant to reduce the complexity of DNN to perform
intelligent OPM in future CON.

In this paper, we propose a novel intelligent optical per-
formance monitoring technique. We choose the constellation
diagrams after constant modulus algorithm (CMA) as input
features and then perform joint MFI and OSNR monitoring us-
ing a binarized convolutional neural network (B-CNN), which
can reach high accuracies of joint MFI and OSNR monitoring
with low memory consumptions and computational complex-
ity. The B-CNN is constructed based on binarized neural
networks (BNNs) [35] with binary weights and activations at
run-time during the forward pass, BNNs drastically reduce
memory size and accesses, and is expected to substantially
improve power-efficiency. To verify the proposed method, we
set up a 12.5 Gbaud flexible dual-polarization (DP) quadrature
amplitude modulation (QAM) system with transmission of 5
km standard single mode fiber (SSMF). We first investigate
how resolution and sample length of a grayscale map influence
the performance of the proposed method. Then we compare
the performance of B-CNN with float-valued CNN (F-CNN)
and MLP. The experimental results show that B-CNN can
reach similar performance with the other two DNNs, while
B-CNN has the lowest memory consumption and fastest
execution speed at run-time. In addition, we further evaluate
the robustness of proposed method in simulation.

The rest part of the paper are structured as follows: Section
II introduces the main operating principle behind this work. In
this section, we first describe how to train and optimize a BNN,
then we describe our modulation scheme and the method that
we use to prepare data for training. Section III details the
experimental system of OPM and the model structure of B-
CNN. Section IV reports the performance of our system and
the comparison between B-CNN, F-CNN and MLP. Section
V further discusses robustness of DNN-assisted methods in a
system with dynamic parameters and Section VI concludes the
work.

II. OPERATING PRINCIPLE

A. Binarized neural networks

When training a BNN, both the weights and the activations
are constrained to either +1 or -1. We select a deterministic
function to transform the real-valued variables into those two
values:

xb = Sign(x) =

{
+1 if x ≥ 0,

−1 otherwise,
(1)

where xb is the binarized variable (weight or activation) and
x is the real-valued variable. Since the derivative of the sign
function is zero almost everywhere, making it apparently in-
compatible with back-propagation, an approach called straight-
through estimator is adopted [35]. Here we denote an input of
a neuron by r and the corresponding output of the neuron by
q. Thus q is computed by sign function quantization

q = Sign(r). (2)

When performing back-propagation, we denote the loss
function by C. According to the chain rule, we can compute
the gradient ∂C/∂r by

∂C

∂r
=

∂C

∂q
× ∂q

∂r
. (3)

Assume that an estimation gq of the gradient ∂C/∂q
has been obtained (with the straight-through estimator when
needed). Since the derivative of sign function is zero, we
estimate the derivative ∂q/∂r by assuming that

∂q

∂r
=

{
1 if |x| ≤ 1,

0 otherwise.
(4)

Then we can compute the estimation gr of the gradient
∂C/∂r by

gr = gq × 1|r|≤1. (5)

Where 1|r|≤1 denote ∂q/∂r in a straight-through estimator.
Note that this preserves the gradient’s information and cancels
the gradient when r is too large. To be more specific, when
the input is either larger than 1 or smaller than -1, we cancel
its gradient and do not update its value anymore, otherwise we
assume the gradient is 1 and spread it in the back-propagation
process. The use of this straight-through estimator can also be
seen as propagating the gradient through hard-tanh, which is
the following piece-wise linear activation function:

Htanh(x) = Clip(x,−1, 1) = max(−1,min(1, x)). (6)

Based on the above method, we can update the real-valued
weight wr during training time. When the weight update bring
wr outside of [−1, 1], we project wr to -1 or 1. Otherwise, the
real-valued weights would grow very large without any impact
on the binary weights. When using a weight wr, we quantize
it using wb = Sign(wr). Therefore the real-valued weights do
not participate in forward propagation of a network.
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Fig. 1. Nine schematic constellation diagrams of modulation format adaptive M-QAM scheme.

For classification tasks, cross-entropy loss is commonly used
to measure the performance of a model whose output is a
probability between 0 and 1. It is calculated as

−
M∑
c=1

yo,c log(po,c), (7)

where M is the number of classes, yo,c is a binary indicator (0
or 1) if class label c is correct classification for observation o
and po,c is the predicted probability observation o is of class c.
The predicted probability po,c is calculated by using softmax
as activation function in the output layer. The softmax function
is defined by Eq. (8), where (z1, . . . , zM ) is the output vector
of output layer.

po,c =
ezc∑M
k=1 e

zk
, for c = 1, . . . ,M (8)

For BNNs, since all the activation functions are replaced with
hard-tanh in training stage and sign function is adopted in
running stage, there exist negative values in the output of last
layer i.e. the output is not a probability between 0 and 1. As
a result, the cross-entropy loss fail to work. Therefore, we
choose squared-hinge function as the loss function given by
Eq. (9), where y is the output of a neuron and t is the target
value.

L(y, t) = max (0, (1− yt)2) (9)

B. Modulation scheme and data preparation

Adaptive modulation increase the capacity of network by
adjusting the modulation formats according to current channel
status. In coherent system, QPSK, 16-QAM and 64-QAM
are the most popular modulation formats. However, the gap
between these three modulation formats is too large. In [36],
a group of modulation schemes of M-QAM are proposed to
improve the capacity of flexible bandwidth adjustment. Fig. 1
shows the constellation points of the proposed nine modulation
format adaptive M-QAM. After in-phase (I) quadrature (Q)

imbalance compensation, chromatic dispersion (CD) com-
pensation and CMA equalization, the grayscale maps at X-
polarization with phase rotation are shown in Fig. 2. In order
to reduce the computation load and enhance the ability to
express the characteristics of different modulation formats, we
directly generate the grayscale maps of constellation diagrams
instead of first collect colored constellation diagrams [19], [24]
because the grayscale map has only one channel. The value
of the pixel represents the density of the constellation points
of the corresponding grid.

Fig. 2. The grayscale map of each modulation format at OSNR of 25 dB.

Based on the above scheme, we randomly generate 5 groups
of 4 × 106 symbols at the transmitter. For each group of
symbols, we collect 20 grayscale maps from 20 time periods
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without overlap at the receiver. As a result, 100 different
grayscale images for each OSNR value of each modulation
format are collected as data set. More specifically, each format
has 1600 grayscale maps for 16 OSNR values (10 ∼ 25 dB for
QPSK, 6-QAM, 8-QAM, 12-QAM, 15 ∼ 30 dB for 16-QAM,
24-QAM, and 20 ∼ 35 dB for 32-QAM, 48-QAM, and 64-
QAM). Therefore, the data set consists of 100×16×9 = 14400
samples in total. Then we randomly mess up the data set and
take 50% as train set, 25% as validation set and the other 25%
as test set. In the training set, each map has a label vector. In
CNN, the label vector is composed of several binary bits, the
amount of binary bits is equal to the class number. In our
scheme, since all the weights and neurons are binarized and
constrained to +1 and -1, the elements of the label vector are
either +1 or -1. We set the first 9 bits to denote the modulation
formats, and the other 16 bits to denote the 16 OSNR values.
Thus the output label vector consists of 25 bits totally. Table
I illustrates the relationship between modulation formats and
corresponding label vectors by listing the labels of QPSK, 16-
QAM, and 64-QAM signals.

TABLE I
EXAMPLES OF LABEL VECTORS

Signal type Label vector

QPSK, 10 dB +1− 1 · · · − 1︸ ︷︷ ︸
9

+1− 1 · · · − 1︸ ︷︷ ︸
16

QPSK, 11 dB +1− 1 · · · − 1︸ ︷︷ ︸
9

−1 + 1 · · · − 1︸ ︷︷ ︸
16

QPSK, 25 dB +1− 1 · · · − 1︸ ︷︷ ︸
9

−1 · · · − 1 + 1︸ ︷︷ ︸
16

16-QAM, 15 dB −1 · · ·+ 1 · · · − 1︸ ︷︷ ︸
9

+1− 1 · · · − 1︸ ︷︷ ︸
16

16-QAM, 16 dB −1 · · ·+ 1 · · · − 1︸ ︷︷ ︸
9

−1 + 1 · · · − 1︸ ︷︷ ︸
16

16-QAM, 30 dB −1 · · ·+ 1 · · · − 1︸ ︷︷ ︸
9

−1 · · · − 1 + 1︸ ︷︷ ︸
16

64-QAM, 20 dB −1− 1 · · ·+ 1︸ ︷︷ ︸
9

+1− 1 · · · − 1︸ ︷︷ ︸
16

64-QAM, 21 dB −1− 1 · · ·+ 1︸ ︷︷ ︸
9

−1 + 1 · · · − 1︸ ︷︷ ︸
16

64-QAM, 35 dB −1− 1 · · ·+ 1︸ ︷︷ ︸
9

−1 · · · − 1 + 1︸ ︷︷ ︸
16

III. SYSTEM SETUP AND NETWORK STRUCTURES

A. Optical communication system

The experimental setup for the demonstration of the pro-
posed OSNR monitoring and MFI technique is shown in Fig.
3. We generate 12.5 Gbaud M-QAM optical signals by mod-
ulating a carrier signal, provided by an external cavity laser
(ECL), using I/Q modulators which are driven by multi-level
electrical signals. The center wavelength of ECL is 1552.52
nm and its linewidth is 100 kHz. Polarization multiplexing is
then realized by utilizing polarization beam splitters (PBSs),
polarization beam combiners (PBCs), and optical delay lines.
The resulting signals are amplified using an erbium-doped
fiber amplifier (EDFA) and sent over a 5 km long SSMF. A

variable optical attenuator (VOA) is utilized to alter OSNRs
of M-QAM signals. The optical signals at the output of EDFA
are filtered using a 0.6 nm optical band-pass filter (OBPF) and
then detected by a coherent receiver. The electrical signals
after optical-to-electronic (O/E) conversion are sampled by
utilizing an oscilloscope with 50 Gsamples/s sampling rate
and 1.6×107 samples are collected, which are then processed
offline using a DSP core. As clear from Fig. 3, the proposed
technique processes polarization de-multiplexed signals after
CMA equalization. We generate grayscale constellation maps
directly from the signals and input to the B-CNN for joint
MFI and OSNR monitoring. Finally, the modulation format
information is used to conduct multiple modulo algorithm
(MMA)-based equalization, carrier phase recovery and symbol
detection & decision, and the OSNR information is utilized to
perform fault & link health detection to assist the cognitive
management in a CON.

B. Network structures of DNNs

We build up the neural network model based on [37]. The
network structure of B-CNN is displayed in Fig. 3, which
consists of 2 convolutional layers, 1 maxpooling layer and
2 fully-connected (FC) layers. The first layer has 64 filters
(convolution kernels) and the second layer has 128 filters. All
the filters have the same size of 4×4. Then the 2 convolutional
layers are followed by a 2 × 2 maxpooling layer to reduce
parameters size. Finally, the three-dimensional data is flattened
and then processed by 2 FC layers and the first FC layer has
512 neuron nodes. The second FC layer has 25 nodes, which
are equal to the number of elements of target label vectors.
As a comparison, a F-CNN with the similar architecture to
B-CNN and a MLP with four FC layers are adopted. In the
F-CNN, the filter numbers for the two convolutional layers are
32 and 64 respectively, the filter size is 3 × 3. The first FC
layer of F-CNN contains 128 neuron nodes and the second
FC layer has 25 nodes. In the MLP, the first and third layers
contain 1024 neuron nodes, the second layer contains 2048
neurons nodes, and the ourput layer contains 25 nodes. In
F-CNN and MLP, sigmoid is selected as activation function
of output layer and relu is selected as activation function of
other hidden layers. Sigmoid and relu are defined by Eq. 10,11
respectively, where y is the output of activation and x is the
input. For all DNNs, Adam optimizer is adopted because it
is computationally efficient and requires less memory [38].
Besides, we adopt Batchnormalization between each layer by
performing the normalization for each mini-batch to accelerate
network training [39]. In addition, dropout method [40] is
adopted to prevent overfitting.

y =
1

1 + e−x
(10)

y = max(0, x) (11)

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we comprehensively discuss the performance
of proposed scheme. We first discuss the influence of sample
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Fig. 3. Experimental setup for joint MFI and OSNR monitoring. PBS: polarization beam splitter; PBC: polarization beam combiner; EDFA: erbium-doped fiber
amplifier; VOA: variable optical attenuator; OBPF: optical band-pass filter; PC: polarization controller; OSA: optical spectrum analyzer; LO: local oscillation;
Conv: convolutional layer; FC: fully-connected layer.

Fig. 4. Three different grayscale maps that is randomly selected from data
sets with different value of L, (a) L = 104; (b) L = 3× 105.

length and resolution of grayscale maps in the data set. Then
we compare the performance of B-CNN with F-CNN and MLP
and discuss the advantages and disadvantages of B-CNN over
the other two. Note that all the results below are the averaged
results from five random weight initialization of DNNs.

A. Influence of sample length and resolution

In this section, we investigate how sample length (e.g. the
length of time period in which we collect a grayscale map)
and the resolution of a grayscale map influence the overall
performance of joint MFI and OSNR monitoring. Hereafter
we denote sample length by L and resolution by R × R. As
shown in Fig. 4, it is obvious that when L is small, the phase
distribution of grayscale maps differ a lot from each other,

Fig. 5. OSNR accuracy vs. L.

which means that the difference within a category in the data
set is large. On the other hand, when L is large, the phase
distribution of grayscale maps are uniform, which indicates
that the difference within a category in the data set is small.
In other words, the boundary between different categories will
be more apparent when L is large. Intuitively, since DNNs are
discriminant models, the performance of DNNs will be better
when L is larger. The results shown in Fig. 5 prove that the
performance of B-CNN grows as L become larger.

Fig. 7 shows the performance of OSNR monitoring as a
function of R. Since a grayscale map with higher resolution
contains more information of the original signals as shown
in Fig. 6, It is unsurprising that the accuracies of OSNR
monitoring increase as R increase.
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Fig. 6. Grayscale maps with different value of R, (a) R = 10; (b) R = 20;
(c) R = 30.

Fig. 7. OSNR accuracy vs. R.

Fig. 8. OSNR accuracy of 16-QAM versus L for different DNNs, while R
is fixed at 30.

Fig. 9. OSNR accuracy of 16-QAM versus R for different DNNs, while L
is fixed at 2× 105.

B. Performance comparison between DNNs

Fig. 8, 9 shows the performance of OSNR monitoring using
different DNNs as a function of L and R. For simplicity,
we take the results for 16-QAM signals as an example. As
depicted in Fig. 8, when R is fixed at 30, F-CNN and
MLP can reach higher OSNR accuracy than B-CNN when
L < 2× 105 and the performance of three DNNs are similar
when L ≥ 2 × 105. Fig. 9 shows that when L is fixed at
2× 105, the performance of F-CNN and MLP are better than
B-CNN when R < 30 and the performance of three DNNs
are similar when R ≥ 30. Therefore, It can be concluded that
MLP and F-CNN have higher tolerance of lower resolution
and shorter sample length than B-CNN.

When we set the value of (L,R) at (2 × 105, 30), the
performance of MFI and OSNR monitoring using different
DNNs is depicted in Fig. 10. All three DNNs perform accurate
MFI, both B-CNN and F-CNN reach 100% accuracy, while
MLP reach 99.99%. The OSNR accuracy of B-CNN range
from 97.71% to 99.72% with average accuracy of 98.91%,
the OSNR accuracy of F-CNN range from 99.10% to 99.93%
with average accuracy of 99.55%, and the range of MLP
is from 97.15% to 99.86% with average value of 98.86%.
According to the experimental results, we can conclude that
F-CNN has the best performance, while B-CNN performs
slightly worse than F-CNN but similarly to MLP. While the
accuracies of predictions are generally similar between three
DNNs, their memory consumption and execution speed in
prediction are significantly different. We compute the memory
size of each DNN when (L,R) = (2× 105, 30) and compute
the average execution time of each DNN from 20 times of
forward propagation. As listed in Table II, B-CNN requires
much lower memory consumption than F-CNN and MLP and
reaches the fastest execution speed among three DNNs. This
is due to the 1-bit weight and 1-bit wise arithmetic operation
of BNNs, which has 32 times lower memory consumption
and 23 times faster execution speed than floating points [35].
Therefore, we can conclude that B-CNN is more energy/time
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Fig. 10. Performance comparison of three DNNs, while (L,R) = (2× 105, 30).

efficient than F-CNN and MLP

TABLE II
MEMORY SIZE AND EXECUTION SPEED OF DNNS

DNN type F-CNN MLP B-CNN

Memory size (MB) 10.23 19.65 3.13

Execution time (s) 0.280 0.116 0.059

V. ROBUSTNESS EVALUATION

In future flexible optical networks, the transceivers will
be reconfigurable and the physical parameters are changing.
However, the data that we use in section IV is collected from
the same link with fixed physical parameters, and it will be
difficult and time consuming to train different models for
different links. Therefore, we further evaluate the performance
of proposed method when physical parameters are changing
in a M-QAM simulation system.

Fig. 11. Accuracy of OSNR estimation by B-CNN trained on data from three
different distances (80 km, 160 km, and 240 km).

At first, we set the transmission distance at 80 km, 160 km
and 240 km and evaluate the performance of B-CNN respec-
tively. The value of (L,R) is set as (2× 105, 40). Simulation
results show that the accuracies of MFI and OSNR monitoring
are all 100% for each transmission distance. Since the above

Fig. 12. Accuracy of OSNR estimation by B-CNN trained on data from three
different launched powers (3 dBm, 5 dBm, and 7 dBm).

results are obtained by training B-CNN at different transmis-
sion distance respectively, we further explore the robustness
of B-CNN to transmission distances by training it only once
using all data from three different transmission distances. The
accuracy of MFI remains 100%, which indicates that B-CNN
is robust to transmission distance in MFI. The accuracies of
OSNR estimation slightly decline as shown in Fig. 11. Next,
we fix the transmission distance at 240 km and change the
launched power to 3 dBm, 5 dBm and 7 dBm. The accuracies
of MFI and OSNR monitoring are also 100% when we train
the model separately. When we train B-CNN using all data
from three different launched power, the performance is also
reduced as shown in Fig. 12.

From the results above, we can conclude that B-CNN can
reach high performance if we train it every time we change
the physical parameters. However, when we use the data
collected from a system with one changing parameter, the
performance of B-CNN is reduced. In practical system with
flexible transceivers, there may be more than one parameter
that is dynamic. To further evaluate the performance of DNN-
assisted OPM, we set up a simulation system with flexible
configuration. Specifically, this system could be either dual-
pol or single-pol, the transmission distance is set at 80 km,
160 km or 240 km, and the launched power is set at 3 dBm,
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Fig. 13. Performance comparison of three DNNs trained upon composite date set.

5 dBm or 7 dBm. Therefore, the system has 2 × 3 × 3 = 18
different parameter configurations. To reduce the training time,
we collect 1440 grayscale maps for each system and hence the
composite data set contains 1440 × 18 = 25920 samples in
total.

Using the composite data set above, we train three different
DNNs and the average accuracies are shown in Fig. 13.
For MFI, all three DNNs reach 100% accuracy. Hence, in
a system with dynamic parameters, MFI of DNN-assisted
methods remain robust. On the other hand, the accuracies
of OSNR monitoring are reduced by varying degree for
different modulation formats and DNN types. For low-level
QAM signals, F-CNN and MLP perform better than B-CNN.
In contrast, F-CNN and B-CNN perform much better than
MLP for high-level QAM signals including 32-QAM, 48-
QAM and 64-QAM. In conclusion, CNNs are more robust in
OSNR monitoring than MLP. Additionally, since binarization
of CNN reduces its representation capacity, B-CNN has lower
robustness than F-CNN. The results in this section motivate us
to pursue further study in two directions. The first is to develop
self-adaptive algorithms that are sensitive to the changing
parameters. And the second is to explore new DNN-assisted
method that has better trade-off in performance, robustness
and complexity.

VI. CONCLUSION

In this paper, we have proposed and experimentally verified
a joint OSNR monitoring and MFI technique in digital coher-
ent receivers by processing ring constellations grayscale maps
based on B-CNN. When the resolution of grayscale maps is
set at 30×30 and the sample length is 2×105, the accuracy of
MFI can reach 100% and the accuracies of OSNR monitoring
can reach higher than 97.7% for nine M-QAM modulation
formats. Compared with commonly used F-CNN and MLP,
B-CNN can achieve the same MFI accuracy. For OSNR
monitoring, the performance of B-CNN is slightly worse than
that of F-CNN but similar to MLP. While the performances
are similar among the three DNNs, B-CNN requires around
1/3 the memory consumption of F-CNN and 1/6 the memory
consumption of MLP. In addition, the execution speed of B-
CNN during forward propagation is fastest among the three
DNNs. Therefore, B-CNN is most energy and time efficient
compared with F-CNN and MLP and hence attractive for real-
time OPM in future optical network.
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