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Abstract: A loss weight adaptive multi-task learning based artificial neural network (MTL-
ANN) is applied for joint optical signal-to-noise ratio (OSNR) monitoring and modulation format
identification (MFI). We conduct an experiment of polarization division multiplexing (PDM)
coherent optical system with 5 km standard single mode fiber (SSMF) transmission to verify this
monitor. A group of modulation schemes including nine modulation adaptive M-QAM formats
are selected as the transmission signals. Instead of circular constellation, signals’ amplitude
histograms after constant module algorithm (CMA) based polarization de-multiplexing are
selected as input features for our proposed monitor. The experimental results show that the MFI
accuracy reaches 100% in the estimated OSNR range. Furthermore, when treated as regression
problem and classification problem, OSNR estimation with a root mean-square error (RMSE) of
0.68 dB and an accuracy of 98.7% are achieved, respectively. Unlike loss weight fixed MTL-ANN,
loss weight adaptive MTL-ANN could search the optimal loss weight ratio automatically for
different link configurations. Besides that, the number of estimated parameters can be easily
expanded, which is attractive for multiple parameters estimation in future heterogeneous optical
networks.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The Cisco visual networking index (2017-2022) shows annual global traffic will reach 4.8 ZB
by 2022, which is 3.7-fold of 2017. Besides, busy hour internet traffic is growing even more
rapidly, which will increase by a factor of 4.8 between 2017 and 2022 [1]. With the development
of digital signal processing algorithms, advanced optical modulation formats, probabilistic
constellation shaping and forward error correction, the capacity of conventional single mode
fiber has approaching Shannon’s limit [2]. In this situation, elastic optical networks (EONs)
enabled by flexible transceivers together with reconfigurable optical add-drop multiplexers
(ROADMs) and software defined network (SDN) controllers, are deployed to realize a more
efficient utilization of physical layer resources from the network perspective [3,4]. In EONSs, data
rate, modulation format, transmission power, etc. can all adjust adaptively based on channel
conditions and capacity demands for different services and ends. It is essential to monitor various
network parameters to optimize resources utilization and allocate adequate system margin [5].
Consequently, optical performance monitoring (OPM) is indispensable in enabling flexibility
and efficiency for EONS.

Among various parameters of OPM, optical signal-to-noise ratio (OSNR) is one of the most
importance due to its direct relation with signal quality after equalization and bit-error ratio (BER)
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[6]. Since OSNR is critical to ensure transmission quality, it should be monitored ubiquitously
across the transmission link including intermediate nodes and destination nodes. Besides OSNR
monitoring, modulation format identification (MFI) has also drawn great interest with the
development of flexible transceivers and EONs [7]. It could grant autonomy and flexibility to
the network owing to carrier phase recovery, frequency offset compensation, decision-directed
least-mean-square (DD-LMS) and multi-modulus based equalization algorithms in receivers are
modulation format dependent [8§—10]. With the development of digital signal processing (DSP),
OPM utilizing data signals after O/E conversion has gained substantial attention. Existing features
for electrical domain-based OPM including amplitude histograms (AHs) [10,11], asynchronous
delay-tap plots (ADTPs) [12,13], peak-to-average-power ratio (PAPR) of signal [8], stokes
parameters [4,14], error vector magnitude [15], digital frequency-offset [16] and intermediate
frequency analysis [17]. Among these metrics, ADTPs and AHs draw more concerns since they
are capable of monitoring multiple impairments simultaneously [5]. In addition to OSNR and
modulation formats, several parameters are also monitored in EONSs such as bit rate, chromatic
dispersion (CD), polarization mode dispersion (PMD), nonlinear noise power etc. [17-19].

To simultaneously estimate multiple parameters in EONs, we proposed an intelligent optical
performance monitor using multi-task learning based artificial neural network (MTL-ANN) in
our previous work [11]. In intensity modulation with direct detection (IM/DD) system, OSNR
monitoring and MFI were achieved jointly with higher accuracy and stability compared with
single-task learning based ANNs (STL-ANNSs). In [11], we demonstrated that the performance of
MTL-ANN strongly depended on the relative loss weight ratio of each tasks. However, the loss
weight ratio of different tasks is tuned manually, which is difficult and expensive for more than
three tasks. In [20], the authors proposed a principled way to adjust loss weight automatically for
MTL based network in computer vision (CV) area.

In this paper, we apply this loss weight adaptive method for the MTL-ANN based optical
performance monitor for real-time multiple parameters estimation in future heterogeneous
optical networks. By using this monitor, OSNR estimation and MFI for the modulation format
adaptive M-QAM scheme in coherent polarization division multiplexing (PDM) system are
achieved simultaneously. To reduce the complexity of monitor, ANN, rather than convolutional
neural network (CNN) or long short-term memory (LSTM) network, is selected as network
structure. In our work, a coherent PDM experimental system over 5 km is conducted to generate
nine modulation format adaptive M-QAM. Signals’ AHs after polarization de-multiplexing are
selected as inputs for this monitor. The experimental results show an MFI accuracy of 100%
for the nine modulation formats under consideration. Besides, OSNR monitoring with root
mean-square error (RMSE) of 0.68 dB and accuracy of 98.7% are achieved when treated as
regression problem and classification problem, respectively. We also build a simulation system
based on VPI transmission Maker 9.1 to investigate the necessity and generalization ability of the
loss weight adaptive MTL-ANN. Compared with loss weight adaptive MTL-ANN, loss weight
fixed MTL-ANN with optimal loss weight ratio achieves similar MFI and OSNR monitoring
performance. However, the optimal loss weight ratio varies with different link configurations.
Therefore, it is time-consuming and complicated to find the optimal loss weight ratio for different
link configurations. By adopting the loss weight adaptive method, the optimal ratio could adjust
automatically. Furthermore, the number of estimated parameters can be easily expanded, which
is attractive for multiple parameters estimation in future heterogeneous optical network.

2. Operating principle
2.1.  Modulation format adaptive M-QAM and AHs

Adaptive modulation increases the capacity of network by adjusting the modulation scheme
according to the channel status. In coherent system, QPSK, 16-QAM and 64-QAM are most
popular modulation formats. However, the gap among these three modulation scheme is too
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big for flexible deployment of adaptive modulation. In [21], a group of modulation schemes of
M-QAM are proposed to improve capacity and flexibility of system. In schemes, n-bit QAM
modulation where n ranges from 2 to 6 including half-integer indices is proposed to smoothly
fill the gap. For modulation schemes with half-integer indices, two symbols are used to transfer
2p + 1 bits (p is integer greater than 1), meaning that a group of M-QAM with M =3 x 2~ s
achieved. For example, if p equals to 4, 4.5 bits are transferred each symbol, where 24-QAM is
achieved. In this way, an intermediate modulation scheme lies between 16-QAM and 32-QAM
is achieved. The bit mapping scheme and configuration of M-QAM are shown in [21]. This
modulation scheme is adopted in optical direct-detection OFDM system to better utilize the
bandwidth [22].

Figure 1 shows the constellation points of the proposed nine modulation format adaptive
M-QAM. The Euclidean distance among neighboring points is same in the designed constel-
lation diagrams. After IQ imbalance compensation, CD compensation and modulation format
independent constant module algorithm (CMA) based polarization de-multiplexing, the heat
map of constellation diagrams at X-polarization with phase rotation are shown in Fig. 2(a).
Different color of the diagram means the density of the constellation points at corresponding grid.
Though 6-QAM signal and 12-QAM signal both have two circles, 8-QAM signal and 16-QAM
signal both have three circles, the position and point number of each circle are different. Since
circular constellation diagrams mainly contain amplitude information of signal, we transform
the 2-D constellations into 1-D AHs with 200 bins as shown in Fig. 2(b). In this way, the
data is compressed which is helpful for complexity-reduced OPM algorithm. Besides that, the
difference of point number for each circle is more obvious in AHs. Instead of normalizing AHs
into the whole bin area [10,11], the position information is preserved while normalizing AHs. In
this way, more information in constellation diagrams is preserved, which is helpful to achieve
OSNR monitoring and MFI with higher accuracy. To overcome the small fluctuation in AH
induced by the incomplete compensation of channel impairments, curve fitting with the average
of neighboring five amplitudes is adopted as Fig. 2(b) blue line shows.
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Fig. 1. Nine schematic constellation diagrams of modulation format adaptive M-QAM
scheme.

Figure 3 shows the AHs after curve fitting for nine modulation formats at different OSNR. It is
clear from Fig. 3 that AHs depend on modulation format as well as OSNR, thus AHs can be
exploited for joint OSNR monitoring and MFL.
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Fig. 2. Modulation format adaptive M-QAM schemes. (a) Heat map of constellation
diagrams at X-polarization with an OSNR of 25 dB after polarization de-multiplexing, (b)
Amplitude histograms (AHs) of constellation diagrams.

QPSK 6-QAM 8-QAM
1500 . 800

—10dB 1000|1008 [ —10dB

--15dB ~-15dB| ) --15dB
1000 20dB A 2008 [\ 600

2508, //
500 :

0 100 200

400

64-QAM

600 —20dB

--25dB
30dB
3548

400

200

0 100 200

0 100 200

Fig. 3. AHs after curve fitting for nine modulation formats at different OSNR (10, 15, 20,
25dB for QPSK, 6-QAM, 8-QAM, 12-QAM,; 15, 20, 25, 30 dB for 16-QAM, 24-QAM; 20,
25, 30, 35 dB for 32-QAM, 48-QAM, 64-QAM).

2.2. Loss weight adaptive MTL-ANN

MTL can be considered as an approach of inductive knowledge transfer which improves
generalization by sharing domain information among related tasks [23]. It does that by using a
shared representation to learn multiple tasks, which means those learned from one task can help
learn other tasks. It can also be considered as one of transfer learning. It is firstly proposed in
CV area to improve pattern identification accuracy [24]. The schematic structure of MTL-ANN
is shown in Fig. 4, multiple output layers are deployed for multiple tasks. Common hidden layers
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and specific layers are deployed to discover the commonality and characteristics of different tasks,
respectively. Number of specific layers and neurons in specific layers can be designed individually
for different tasks. For each task, it could be either classification problem or regression problem.
Since the performance of MTL-ANN strongly depends on the relative loss weight of each tasks
[11], it is important to find an optimal loss weight. However, searching an optimal weight is
prohibitively expensive and difficult with manual tuning. In this paper, we use homoscedastic
uncertainty mentioned in [20] to combine multiple loss functions of each tasks.

Input Shared Hidden
Layer Layers

Output
Layers

O O
| X[/n
G

O Rty

-—

Specific Layers

-

™,

1
|
|
|
|
|
1
1
1
|
|
X}

O OO

O/

Refyifn]
Adjust network weight Adjust task loss weight

Fig. 4. Schematic structure of loss weight adaptive MTL-ANN.

In Bayesian modelling, homoscedastic uncertainty stays constant for all input data and varies
among different tasks which can be described as task-dependent uncertainty [25]. A multi-task
loss function based on maximizing the Gaussian likelihood with homoscedastic uncertainty can
be derived as following. Let W (x) be the output of a neural network with weights W on input
x, y be the reference output. For regression task, the likelihood can be defined as a Gaussian
distribution with a noise scalar o as shown in Eq. (1). For classification task, the likelihood of
model output is squashed to a softmax function with a scaled parameter o [20]. By adoptingo,
classification task and regression task suffer the same scale.
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In the case of multiple model outputs, each task is regarded as statistic independent, so the
likelihood is defined to factorise over the outputs as Eq. (3) shows. Where yi,. .., yx represents

reference output of different tasks. Our aim is to maximum the likelihood inference. If we define
the loss as Eq. (4), our aim is lead to minimize the loss.

POk @) = pOon Y () - <. pOk Y (%)) 3)
L(W) = —=InpOylfY (x)) 4)

Assuming a model’s multiple outputs are composed of a classification output y; and a regression
output y», modelled with a softmax likelihood and a Gaussian likelihood, respectively. The joint
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loss is given as:
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If we write L; (W) = -In[Softmax(yy, £V (x))] with f¥ (x) not scaled by o~ for the cross entropy
loss of y1, Ly(W) = [|ya- Y (x)|]? for the Euclidean loss of y;. The joint loss can be rewritten as:
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In the last transition, the last term roughly equal to In(c-1) when o-; converge to 1. This has the
advantage to simplify the optimization objectives, as well as unified the loss form for classification
task and regression task. In a word, the general expression of joint loss with homoscedastic
uncertainty for MTL based network is:

K
Lw =) (ﬁu(m . ln(a?)) )

i=1 i

Where K represents the number of tasks, L;(W) represents the loss function of task i. For the
unity of expression, coefficients of the loss function are set as 1/0-;> for both classification task
and regression task. In(o;?) can be regarded as regularization term which means the loss will be
penalized when setting o-; too large. Since the loss is smoothly differentiable, Adam algorithm
is adopted to adjust network weights and tasks’ loss weights in MTL-ANN jointly during the
training stage. Compared with traditional stochastic gradient descent algorithm, Adam algorithm
is computationally efficient and requires little memory [26].

3. Experimental setup and results
3.1.  Experimental setup, data collection and network design

The experimental setup of coherent PDM system is shown in Fig. 5(a). An optical carrier at
1552.52 nm generated from a laser with 100 kHz linewidth is injected to the IQ modulator (Fujitsu,
FTM7961EX/301). A 50 GSa/s arbitrary waveform generator (AWG, Tektronix AWG70002A)
generates the proposed nine modulation format adaptive M-QAM signals with a pattern length of
213_1 symbols at 12.5 GBaud. Signals with peak-to-peak voltage of about 1.2 V drives the IQ
modulator. Polarization multiplexing is emulated by utilizing polarization beam splitter (PBS),
polarization beam combiner (PBC) and optical delay lines. After that, the generated optical
M-QAM signals with —2 dBm power are launched to 5 km standard single mode fiber (SSMF).
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After the fiber transmission, a variable optical attenuator (VOA) and an erbium-doped fiber
amplifier (EDFA) are employed to load optical noise and adjust OSNR from 10dB to 25dB
for QPSK, 6-QAM, 8-QAM, and 12-QAM signals, 15 dB to 30 dB for 16-QAM and 24-QAM
signals and 20dB to 35 dB for 32-QAM, 48-QAM, and 64-QAM signals at a step of 1 dB. At
the receiver, the signals are passed through a 0.6-nm optical band pass filter (OBPF) and the
resulting OSNR is measured by an optical spectrum analyser (OSA). The local oscillator (LO)
laser has a linewidth of 100 kHz and its frequency offset with respect to transmitter laser is
about 1 GHz. After detected by a 100G dual-polarization integrated coherent receiver (Fujitsu,
FTM24706/301), the electrical signals are sampled by a 100 GSa/s digital phosphor oscilloscope
(DPO, Tektronix DPO72504D). Finally, the digital signals are processed by the offline DSP as
shown in Fig. 5(b).
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Fig. 5. (a) Experimental setup of coherent PDM system with nine modulation format
adaptive M-QAM signals, (b) DSP configuration with two proposed OPM.

At the beginning of the offline DSP flow, the data stream is firstly resampled to enable the
proposed algorithm. Then, modulation format independent IQ imbalance compensation and CD
compensation are used. Next, we employ CMA-based equalization to de-multiplex PDM signals
and compensate linear transmission impairments. After that, circular constellation diagrams with
phase rotation are transformed to AHs with 200 bins. Curve fitting is adopted for AHs as shown
in Fig. 2(b). Finally, two OPM schemes are deployed for OSNR monitoring and MFI. In OPM-1,
a loss weight fixed MTL-ANN is deployed. In OPM-2, our proposed loss weight adaptive
MTL-ANN is deployed. Both ANNs have same network structure for comparison. The obtained
OSNR information can be used to evaluate the quality of received optical signals. On the other
hand, MFI information can be exploited by subsequent modulation format dependent equalization
algorithm, like decision-directed least mean square (DD-LMS) algorithm or multi-modulus
algorithm (MMA). In this paper, Keras library combined with Tensorflow backend are selected
to build the model of ANN [27].

Based on the above system, 100 AHs for each OSNR value of each modulation format
(dual-polarization) are collected. The OSNR range is 10-25 dB for QPSK, 6-QAM, 8-QAM, and
12-QAM signal, 15-30dB for 16-QAM and 24-QAM signal, 20-35 dB for 32-QAM, 48-QAM
and 64-QAM signal. So the entire data set comprises 14400 (100 x 16 x9) AHs in total. We
randomly select 90% (i.e. 12960) AHs in the data set as training set and the remaining 10% (i.e.
1440) AHs are selected as testing set. In our work, validation set is deployed to avoid overfitting
problem. 10% of the data in the training set (i.e. 1296) are selected as validation set.

After experimental setup and data collection, ANN structure is investigated. Since the bin
number of AHs is set as 200, the neuron number in input layer is 200. The designed ANN
contains one shared hidden layer. Two specific hidden layers and one specific hidden layer are
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designed for OSNR monitoring and MFI, respectively. The neurons in specific hidden layers
are designed a half of the neurons in their front layer and the optimal neuron number in shared
hidden layer will be investigated in Section 3.2. Tanh-sigmoid function is selected as activation
function for neurons in hidden layers. In this paper, variable learning rate with initial rate of
1x 1073 and final rate of 1 x 107 is deployed to accelerate network convergence speed and
improve performance at same time. Learning rate change step depends on the epochs in Eq. (8),
where [r represents learning rate.

Winitial = l’fﬁnial

epochs

®)

Ir decay =

3.2. Comparison of regression and classification problem for OSNR monitoring

OSNR monitoring is usually regarded as a regression problem. Nevertheless, it can also be treated
as a classification problem with a proper classification interval. In this section, we investigate
the monitoring performance for both two schemes. For regression problem, linear function is
selected as activation function in output layer. For classification problem, softmax function is
selected as activation function. In this way, 26 OSNR values (from 10 dB to 35 dB with a step of
1 dB) require a one-hot vector with 26 elements and nine modulation formats require a one-hot
vector with 9 elements. One-hot vector means a single non-zero vector whose location signifies
the true value.

At first, we investigate the MFI accuracy when OSNR monitoring is treated as regression
problem and classification problem, respectively. Table 1 shows the MFI accuracy for different
modulation formats. The MFI accuracy of nine modulation formats is 100% in the estimated
shared hidden layer neuron number range (i.e. 40 to 500) for loss weight adaptive MTL-ANN
(i.e. OPM-2) and loss weight fixed MTL-ANN (i.e. OPM-1) with optimal loss ratio. In other
word, as to the MTL-ANN, regarding OSNR monitoring as regression problem or classification
problem will not affect MFI accuracy.

Table 1. MFI accuracy for different modulation formats

Identified modulation format
QPSK | 6QAM | 8QAM | 12QAM | 16QAM | 24QAM | 32QAM | 43QAM | 64QAM
- QPSK 100% 0% 0% 0% 0% 0% 0% 0% 0%
g 6QAM 0% 100% 0% 0% 0% 0% 0% 0% 0%
£ 8QAM 0% 0% 100% 0% 0% 0% 0% 0% 0%
E 12QAM 0% 0% 0% 100% 0% 0% 0% 0% 0%
% 16QAM 0% 0% 0% 0% 100% 0% 0% 0% 0%
3 24QAM 0% 0% 0% 0% 0% 100% 0% 0% 0%
é 32QAM 0% 0% 0% 0% 0% 0% 100% 0% 0%
§ 48QAM 0% 0% 0% 0% 0% 0% 0% 100% 0%
< 64QAM 0% 0% 0% 0% 0% 0% 0% 0% 100%

Then we investigate OSNR monitoring performance when treated as a regression problem.
Epochs are set big enough (i.e. epochs = 600) to guarantee that the network have reached optimal
performance. Since the performance of ANN is affected by the random initialization of ANN
weights [11], we evaluate the performance by taking average value, maximum value and minimum
value from five random initialization. Figure 6(a) shows the OSNR estimated RMSE versus
neurons in shared hidden layer for loss weight adaptive MTL-ANN. The definition of RMSE is
shown in Eq. (9). Where f(x[n]) represents the output of ANN for x[n] and y[n] represents the
corresponding reference value. N is the number of test data.

N
RMSE(f(x[n]), yln]) = }V D {fadnl) - yinl? ©)
n=1
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In our experiment, the optimal neuron number in shared hidden layer for weight adaptive
MTL-ANN is about 450 and the OSNR estimated RMSE is 0.68 dB at this situation. Figure 6(b)
shows the estimated OSNRs versus true OSNRs at optimal network hyperparameters. As shown
in the figure, OSNR estimation suffers large estimating error in high OSNR range. To compare
the performance of regarding OSNR estimation as regression problem and classification problem,
we also investigate the equivalent estimating accuracy of regression problem and equivalent
RMSE of classification problem. We treat OSNR estimation as a correct estimation when the
estimating error is less than a given threshold. The OSNR estimating accuracy is about 67.8%
when the threshold is set as 0.5 dB. Which means 67.8% estimating results are exist within [-0.5,
0.5) dB estimating deviation.
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Fig. 6. (a) OSNR estimated RMSE versus neurons in shared hidden layer for loss weight
adaptive MTL-ANN, (b) True OSNRs versus estimated OSNRs of loss weight adaptive
MTL-ANN (Average, maximum and minimum value from five random initialization).

Since OSNR value has a certain range for signal transmission in realistic field and OSNR
monitoring with a proper classification interval can be set for different situation, we also investigate
the performance of regarding OSNR monitoring as a classification problem. After optimizing the
fixed loss weight ratio, we find the optimal loss ratio of OSNR to MFI is 100:1 for the experimental
data. Figure 7 shows the OSNR accuracy versus hidden neurons in shared hidden layer for
loss weight fixed and adaptive MTL-ANN. Loss weight adaptive MTL-ANN outperforms loss
weight fixed MTL-ANN with 1:1 ratio obviously. More than 7% OSNR accuracy improvement
is achieved. Compared with loss weight fixed MTL-ANN with 100:1 ratio, both of them can
achieve high OSNR accuracy. In our experiment, the optimal neuron number in shared hidden
layer for the optimal weight fixed MTL-ANN is about 200 and the OSNR accuracy is 98.5% at
this situation. As for the loss weight adaptive MTL-ANN, the optimal neuron number in shared
hidden layer is about 350 and the OSNR accuracy is 98.7% at this situation. The equivalent
RMSE of the loss weight adaptive MTL-ANN is 0.66 dB. Note that, while investigating the
equivalent RMSE of classification problem, the one-hot vector is firstly transformed to the OSNR
value and then RMSE is calculated according to Eq. (9).

The comparison of regarding OSNR monitoring as regression and classification problem is
summarized in Table 2. Compared with regarding OSNR monitoring as a regression problem,
regarding it as a classification problem achieves similar RMSE and much higher accuracy.
This means the inaccurately estimated OSNR suffers large vibration for classification problem.
However, the inaccurately estimated OSNR is only a small part and can be identified by analyzing
the OSNR output vector of neural network. Therefore, regarding OSNR monitoring as a
classification problem achieves better OSNR monitoring performance. OSNR monitoring is
selected as a classification problem in the following part.
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Fig. 7. OSNR accuracy versus hidden neurons in shared hidden layer for loss weight
fixed and adaptive MTL-ANN (Average, maximum and minimum value from five random
initialization).

Table 2. Comparison of regression and classification problem for OSNR monitoring

OSNR monitoring problem type RMSE (dB) Accuracy (%)
Regression 0.68 67.8
Classification 0.66 98.7

3.3. Experimental results and discussions

In this section, OSNR monitoring is selected as a classification problem. Figure 8(a) shows the
MEFI accuracy versus epochs at optimal neuron number in shared hidden layer. For loss weight
adaptive MTL-ANN and loss weight fixed MTL-ANN with 100:1 loss ratio, the MFI accuracy is
100% when the number of epoch is larger than 50. As for loss weight fixed MTL-ANN with 1:1
ratio, MFI accuracy roughly rises under 300 epochs, which means 300 epochs are enough for
MEFTI task. OSNR estimating accuracy versus epochs is shown in Fig. 8(b). Compared with MFI
task, more epochs are needed for OSNR monitoring task, which means OSNR monitoring is
more difficult. The conclusion is same as [11]. For loss weight adaptive MTL-ANN, OSNR
accuracy improves rapidly with the increase of epochs and a floor appears when epochs reach
400. As for loss weight fixed MTL-ANN with 100:1 ratio, it outperforms adaptive MTL-ANN
when the number of epoch is less than 300. About 450 epochs are needed to achieve the optimal
accuracy. As for loss weight fixed MTL-ANN with 1:1 ratio, 550 epochs are needed, which
indicates training time can be reduced by choosing loss weight ratio properly. Note that, the
optimal OSNR estimating accuracy is 98.7% for loss weight adaptive MTL-ANN.

After investigating the OSNR estimating accuracy for the group of modulation formats, the
average OSNR estimating accuracy from five random initialization for different modulation
format is shown in Fig. 9. The blue dotted line represents the average optimal OSNR accuracy
of all modulation formats (i.e. 98.7%). The OSNR accuracy is higher than 97.5% for all
modulation formats, which means the proposed method is effective for all modulation formats
under consideration. Except QPSK, 32QAM and 48QAM, the OSNR accuracy of other six
formats is higher than 98.7%.

Table 3 shows the optimal loss weight ratio for loss weight adaptive MTL-ANN in random
initialization. Different with loss weight fixed MTL-ANN, which only adjust network weights
during the training stage, the proposed adaptive method adjust tasks’ loss weights and network
weights jointly. Therefore, the optimal loss weight ratio found by the proposed adaptive method
varies with different network weights. In other word, the optimal ratio varies with random
initialization of network. As can be seen from Table 3, the similar OSNR accuracy can be
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Fig. 8. (a) MFI accuracy and (b) OSNR accuracy versus epochs for loss weight fixed
and adaptive MTL-ANN (Average, maximum and minimum value from five random
initialization).
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Fig. 9. OSNR accuracy for different modulation format in loss weight adaptive MTL-ANN
(Average value from five random initialization).

achieved with different loss weight ratio. This means the optimal loss weight ratio for the
proposed adaptive method is not fixed for a specific link configuration and several loss weight
ratios can achieve the optimal performance.

Table 3. Loss weight ratio for loss weight adaptive MTL-ANN in random initialization

Random initialization

1 2 3 4 5
Loss weight ratio (MFI to OSNR) 2201 2444 637 559 1465
OSNR accuracy (%) 98.3 97.7 97.5 99.1 98.75

Finally, we investigate the performance of loss weight adaptive MTL-ANN without the
regularization term mentioned in Eq. (7). As shown in Fig. 10, MFI accuracy can reach 99.8%
without regularization term since it is a simple task. As for OSNR monitoring, the accuracy
is about 55%. Compared with loss weight adaptive MTL-ANN with regularization term, the
OSNR accuracy decreases more than 40%. The reason is that directly learning the loss weight



Research Article Vol. 27, No. 25/9 December 2019/ Optics Express 37052 |

Optics EXPRESS N

without regularization term will result in fast convergence to zero for joint loss [20]. Therefore,
the regularization terms are indispensable for difficult tasks in the weight adaptive MTL method.
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Fig. 10. MFI accuracy and OSNR accuracy versus epochs for loss weight adaptive MTL-
ANN without regularization term (Average, maximum and minimum value from five random
initialization).

4. Discussion of loss weight adaptive MTL-ANN in simulation system

In this part, we build a simulation system based on VPI transmission Maker 9.1 to investigate
the necessity and generalization ability of the loss weight adaptive MTL-ANN. As discussed
in Section 3, loss weight adaptive MTL-ANN and loss weight fixed MTL-ANN with optimal
loss weight ratio both achieve similar MFI and OSNR monitoring performance. Besides, fewer
neurons and same epochs are needed for loss weight fixed MTL-ANN with optimal loss weight
ratio. However, the optimal loss weight ratio varies with different link configurations. Figure 11
shows OSNR accuracy versus loss weight ratio for three link configurations in simulation system.
As can be seen from the figure, the optimal loss weight ratio for the proposed nine modulation
format adaptive M-QAM at 28 GBaud after 2000 km transmission is 300. As for 28 GBaud
signals after 10 km transmission, the optimal ratio is 500. As for 14 GBaud signals after 10 km

100 -
—

X °

< :ﬁ>l§l><-\.

z S o e
) o

5 _~

3 90f A /‘

<

= | i .

Z —A—28GBaud-2000km
o —m— 28GBaud-10km

—®— 14GBaud-10km

80 1 1 1
10 100 1000 10000

Loss weight ratio (OSNR to MFI)

Fig. 11. OSNR accuracy versus loss weight ratio (OSNR to MFI) for loss weight fixed
MTL-ANN in simulation.
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transmission, the optimal ratio is 3000. Therefore, it is time-consuming and highly complex to
find the optimal loss weight ratio for different link configurations manually.

Figure 12 shows the OSNR accuracy versus the data number in test set. Data obtained from
simulation system with nine M-QAM signals at 28 GBaud after 2000 km transmission are used
to test the performance of OSNR estimation. 10080 (70 x 16 X 9) AHs are collected for train set.
As can be seen from Fig. 12, OSNR estimation has a stable performance when the test data set is
obtained from a longer duration, which means the proposed loss weight adaptive MTL-ANN has
an excellent generalization ability.
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Fig. 12. OSNR accuracy versus data number in test set for loss weight adaptive MTL-ANN
in simulation (Average, maximum and minimum value from five random initialization).

5. Conclusion

In this paper, we have applied a loss weight adaptive MTL-ANN based optical performance
monitor to simultaneously monitor OSNR and identify modulation formats with signals’ AHs as
input features. An experimental setup for coherent PDM system with 5 km SSMF transmission
is deployed to evaluate the performance of the proposed monitor. The experimental results show
that the MFI accuracy of nine adaptive M-QAM considered reaches 100% in the estimated OSNR
range. Besides, OSNR estimation with RMSE of 0.68 dB and accuracy of 98.7% are achieved
when treated as regression problem and classification problem, respectively. The OSNR accuracy
for all modulation formats is higher than 97.5%. We also investigate the equivalent OSNR
estimating accuracy and RMSE for regression problem and classification problem, respectively.
After comparison, we find regarding OSNR monitoring as a classification problem achieves
better OSNR monitoring performance.

Through investigating the optimal loss weight ratio in random initialization, we find several
loss weight ratios can achieve the optimal performance for the proposed adaptive method. The
importance of regularization terms in joint loss function for MTL-ANN is also investigated.
Furthermore, in the simulation system, we demonstrate that the proposed loss weight adaptive
MTL-ANN has an excellent generalization ability when the test data is obtained from a longer
duration. Though there is almost no performance difference between loss weight adaptive
MTL-ANN and loss weight fixed MTL-ANN with optimal loss weight ratio, the proposed loss
weight adaptive MTL-ANN can search the optimal loss weight ratio automatically. This feature
is time-saving and low complexity since the optimal loss weight ratio varies for different link
configuration. By adopting this loss weight adaptive method, the number of estimated parameters
can be easily expanded, which is attractive for real-time multiple parameters estimation in future
heterogeneous optical network.
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